Skip to main content


Log in

Energy efficient routing formation algorithm for hybrid ad-hoc network: A geometric programming approach

  • Published:
Peer-to-Peer Networking and Applications Aims and scope Submit manuscript


In this paper, a novel routing formation algorithm called Geometric programming based Energy Efficient Routing protocol (GEER) is proposed for hybrid ad-hoc network. It optimizes two sets of objectives: (i) maximize network lifetime and throughput, and (ii) minimize packet loss and routing overhead. The stated optimizations are done by the fusion of multi-objective optimization, geometric programming, and intuitionistic fuzzy set. The combination of stated techniques provides an effective tool that evaluates an optimal solution based on all objectives and estimates non-linear parameters of the network. The proposed method GEER is simulated in LINGO optimization software and validated with some existing methods in several scenarios. The outcomes of validation illustrate that the proposed method GEER outperforms the other existing methods based on several network metrics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33

Similar content being viewed by others


  1. Venkata Krishna P, Iyengar NCSN, Misra S (2008) An efficient hash table-based node identification method for bandwidth reservation in hybrid cellular and ad-hoc networks. Comput Commun 31(4):722–733

    Article  Google Scholar 

  2. Zhong Y, Kwak KS, Yuan D (2009) Cross layer multicarrier mimo cognitive cooperation scheme for wireless hybrid ad hoc networks. Comput Commun 32(3):546–551

    Article  Google Scholar 

  3. Garmehi M, Analoui M, Pathan M, Buyya R (2014) An economic replica placement mechanism for streaming content distribution in hybrid cdn-p2p networks. Comput Commun 52:60–70

    Article  Google Scholar 

  4. Yuste-Delgado AJ, Cuevas-Martinez JC, Canada-Bago J, Fernández-Prieto JA, Gadeo-Martos MA (2016) Improving hybrid ad hoc networks the election of gateways. Appl Soft Comput 41:1–14

    Article  Google Scholar 

  5. Chai Y, Shi W, Shi T, Yang X (2017) An efficient cooperative hybrid routing protocol for hybrid wireless mesh networks. Wirel Netw 23(5):1387–1399

    Article  Google Scholar 

  6. Sah DK, Amgoth T (2018) Parametric survey on cross-layer designs for wireless sensor networks. Computer Science Review 27:112–134

    Article  MathSciNet  Google Scholar 

  7. Jayraj S, Singh A , Shree R (2011) An assessment of frequently adopted unsecure patterns in mobile ad hoc network: requirement and security management perspective. Int J Comput Appl 2.9:0975–8887

    Google Scholar 

  8. Das SK, Tripathi S (2017) Adaptive and intelligent energy efficient routing for transparent heterogeneous ad-hoc network by fusion of game theory and linear programming. Applied Intelligence, pp 1-21,

  9. Das SK, Tripathi S (2017) Energy efficient routing formation technique for hybrid ad hoc network using fusion of artificial intelligence techniques. Int J Commun Syst, pp 1–6,

  10. Sudhakar P, Pal P (2014) Spin-MI: energy saving routing algorithm based on SPIN protocol in WSN. Natl Acad Sci Lett 37.4:335–339

    Google Scholar 

  11. Kaswan A, Nitesh K, Jana PK (2016) A routing load balanced trajectory design for mobile sink in wireless sensor networks. In: 2016 international conference on advances in computing, communications and informatics (ICACCI). IEEE, pp 1669–1673

  12. Kaswan A, Nitesh K, Jana PK (2017) Energy efficient path selection for mobile sink and data gathering in wireless sensor networks. AEU-Int J Electron C 73:110–118

    Article  Google Scholar 

  13. Anwit R, Kumar P, Singh MP (2014) Virtual coordinates routing using vcp-m in wireless sensor network. In: 2014 international conference on computational intelligence and communication networks (CICN). IEEE, pp 402–407

  14. Saleh AI, Arafat H, Hamed AM (2017) An adaptive hybrid routing strategy (ahrs) for mobile ad hoc networks. Peer-to-Peer Networking and Applications:1–18.

  15. Joh H, Ryoo I (2015) A hybrid wi-fi p2p with bluetooth low energy for optimizing smart device’s communication property. Peer-to-Peer Networking and Applications 8(4):567–577

    Article  Google Scholar 

  16. Sudhakar P, Pal P, Mukherjee A (2015) IRF-NMB: intelligent route formation technique in Ad Hoc network using node mobility behaviour. Natl Acad Sci Lett 38.3:213–219

    MathSciNet  Google Scholar 

  17. Kaswan A, Tomar A, Jana PK (2018) A GSA-based scheduling scheme for mobile charger in on-demand wireless rechargeable sensor networks. J Netw Comput Appl.

  18. Singh J et al (2016) A study of soft computing models for prediction of longitudinal wave velocity. Arab J Geosci 9.3:224

    Article  Google Scholar 

  19. Yang H-S, Sun J-H (2016) A study on hybrid trust evaluation model for identifying malicious behavior in mobile p2p. Peer-to-Peer Networking and Applications 9(3):578–587

    Article  MathSciNet  Google Scholar 

  20. Park GS, Song H (2016) A novel hybrid p2p and cloud storage system for retrievability and privacy enhancement. Peer-to-Peer Networking and Applications 9(2):299–312

    Article  Google Scholar 

  21. Zhao J, Wu C, Lin X (2015) Locality-aware streaming in hybrid p2p-cloud cdn systems. Peer-to-Peer Networking and Applications 8(2):320–335

    Article  Google Scholar 

  22. Hwang C-L, Masud ASM (2012) Multiple objective decision making—methods and applications: a state-of-the-art survey, vol 164. Springer Science & Business Media, Berlin

    Google Scholar 

  23. Caleffi M, Paura L (2011) M-dart: multi-path dynamic address routing. Wirel Commun Mob Comput 11 (3):392–409

    Article  Google Scholar 

  24. Cacciapuoti AS, Caleffi M, Paura L (2012) Reactive routing for mobile cognitive radio ad hoc networks. Ad Hoc Netw 10(5):803–815

    Article  Google Scholar 

  25. Caleffi M, Akyildiz If, Paura L (2012) Opera: optimal routing metric for cognitive radio ad hoc networks. IEEE Trans Wirel Commun 11(8):2884–2894

    Google Scholar 

  26. Sridhar S, Baskaran R, Chandrasekar P (2013) Energy supported aodv (en-aodv) for qos routing in manet. Procedia Soc Behav Sci 73:294–301

    Article  Google Scholar 

  27. Pandey S, Pal P (2014) Spin-mi: energy saving routing algorithm based on spin protocol in wsn. Natl Acad Sci Lett 37(4):335–339

    Article  Google Scholar 

  28. Sassatelli L, Ali A, Panda M, Chahed T, Altman E (2014) Reliable transport in delay-tolerant networks with opportunistic routing. IEEE Trans Wirel Commun 13(10):5546–5557

    Article  Google Scholar 

  29. Ravi G, Kashwan KR (2015) A new routing protocol for energy efficient mobile applications for ad hoc networks. Comput Electr Eng 48:77–85

    Article  Google Scholar 

  30. Pandey S, Pal P, Mukherjee A (2015) Irf-nmb: intelligent route formation technique in ad hoc network using node mobility behaviour. Natl Acad Sci Lett 38(3):213–219

    Article  MathSciNet  Google Scholar 

  31. Liu J, Hou YT, Shi Y, Sherali HD (2008) Cross-layer optimization for mimo-based wireless ad hoc networks: routing, power allocation, and bandwidth allocation. IEEE J Sel Areas Commun 26(6):1–14

    Article  Google Scholar 

  32. Guerriero F, De Rango F, Marano S, Bruno E (2009) A biobjective optimization model for routing in mobile ad hoc networks. Appl Math Model 33(3):1493–1512

    Article  MathSciNet  Google Scholar 

  33. Guo Z, Malakooti S, Sheikh S, Al-Najjar C, Malakooti B (2011) Multi-objective olsr for proactive routing in manet with delay, energy, and link lifetime predictions. Appl Math Model 35(3):1413–1426

    Article  Google Scholar 

  34. Lee J-H, Moon I (2014) Modeling and optimization of energy efficient routing in wireless sensor networks. Appl Math Model 38(7):2280–2289

    Article  MathSciNet  Google Scholar 

  35. Gu C, Zhu Q (2014) An energy-aware routing protocol for mobile ad hoc networks based on route energy comprehensive index. Wirel Pers Commun 79(2):1557–1570

    Article  Google Scholar 

  36. Carvalho T, Jailton J Jr, Francês R (2016) A new cross-layer routing with energy awareness in hybrid mobile ad hoc networks: a fuzzy-based mechanism. Simul Model Pract Theory 63:1–22

    Article  Google Scholar 

  37. Sadou M, Bouallouche-Medjkoune L (2016) Efficient message delivery in hybrid sensor and vehicular networks based on mathematical linear programming. Comput Electr Eng.

  38. Kuo W-K, Chu S-H (2016) Energy efficiency optimization for mobile ad hoc networks. IEEE Access 4:928–940

    Article  Google Scholar 

  39. Mazumdar N, Om H (2017) Distributed fuzzy logic based energy-aware and coverage preserving unequal clustering algorithm for wireless sensor networks. Int J Commun Syst.

  40. Das SK, Yadav AK, Tripathi S (2017) Ie2m: design of intellectual energy efficient multicast routing protocol for ad-hoc network. Peer-to-Peer Networking and Applications 10(3):670–687.

    Article  Google Scholar 

  41. Yadav AK, Das SK, Tripathi S (2017) Efmmrp: design of efficient fuzzy based multi-constraint multicast routing protocol for wireless ad-hoc network. Comput Netw 118:15–23.

    Article  Google Scholar 

  42. Das SK, Tripathi S (2016) Intelligent energy-aware efficient routing for manet. Wirel Netw:1–21.

  43. Caleffi M, Akyildiz If, Paura L (2015) On the solution of the steiner tree np-hard problem via physarum bionetwork. IEEE/ACM Trans Networking 23(4):1092–1106

    Article  Google Scholar 

  44. Nazi A, Raj M, Di Francesco M, Ghosh P, Das SK (2016) Efficient communications in wireless sensor networks based on biological robustness. In: 2016 international conference on distributed computing in sensor systems (DCOSS). IEEE, pp 161–168

  45. Das K, Bhaduri K, Kargupta H (2011) Multi-objective optimization based privacy preserving distributed data mining in peer-to-peer networks. Peer-to-Peer Networking and Applications 4(2):192–209

    Article  Google Scholar 

  46. Kaswan A, Singh V, Jana PK (2018) A multi-objective particle swarm optimization based energy efficient path design for mobile sink in wireless sensor networks. Pervasive and Mobile Computing.

  47. Ma Z, Zhao Q, Huang J (2017) Optimizing bandwidth allocation for heterogeneous traffic in iot. Peer-to-Peer Networking and Applications 10(3):610–621

    Article  Google Scholar 

  48. Ojha AK, Biswal KK (2014) Multi-objective geometric programming problem with-constraint method. Appl Math Model 38(2):747–758

    Article  MathSciNet  Google Scholar 

Download references


The authors would like to thank the associate editor and the anonymous reviewers for their insightful comments and suggestions that helped us to improve the content of this paper.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Santosh Kumar Das.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, S.K., Tripathi, S. Energy efficient routing formation algorithm for hybrid ad-hoc network: A geometric programming approach. Peer-to-Peer Netw. Appl. 12, 102–128 (2019).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: