Hierarchical architectures in structured peer-to-peer overlay networks

Abstract

Distributed Hash Tables (DHT) are presently used in several large-scale systems in the Internet and envisaged as a key mechanism to provide identifier-locator separation for mobile hosts in Future Internet. Such P2P-based systems become increasingly complex serving popular social networking, resource sharing applications, and Internet-scale infrastructures. Hierarchy is a standard mechanism for coping with heterogeneity and scalability in distributed systems. To address the shortcomings of flat DHT designs, many hierarchical P2P designs have been proposed over recent years. The last generation is hierarchical DHTs (HDHTs) where nodes are organized onto layers and groups. This article discusses hierarchical architectures applied in structured P2P overlay networks, focusing on HDHT designs. We introduce a framework consisting of conceptual models of network hierarchy, multi-layer hierarchical DHT architectures, principles affecting the design choices, and cost models for system tradeoff analysis, performance evaluation, and scalability estimation. Based on the framework we provide a taxonomy and survey more than 20 hierarchical HDHT proposals.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Notes

  1. 1.

    For simplicity we assume in (1) and (2) that there is no \(u\in N\), \(u\neq d\) such that \(\rho (d,k)=\rho (u,k)\).

  2. 2.

    Resource replication, large routing tables, and some other methods exist to improve the performance, but the cost is higher load to nodes, see the discussion in [11] and references therein.

  3. 3.

    In basic Chord, every node periodically calls the stabilization and fixfingers procedures—a proactive strategy.

References

  1. 1.

    Stoica I, Morris R, Karger D, Kaashoek MF, Balakrishnan H (2001) Chord: a scalable peer-to-peer lookup service for internet applications. In: Proc. of ACM SIGCOMM’01. ACM Press, San Diego, pp 149–160

    Google Scholar 

  2. 2.

    Ratnasamy S, Handley PFM, Karp R, Shenker S (2001) A scalable content-addressable network. In: Proc. of ACM SIGCOMM’01. ACM Press, San Diego, pp 161–172

    Google Scholar 

  3. 3.

    Rowstron A, Druschel P (2001) Pastry: scalable, distributed object location and routing for large-scale peer-to-peer systems. In: Middleware’01: Proc. of IFIP/ACM Int’l Conf. on distributed systems platforms. Volume 2218 of lecture notes in computer science. Springer-Verlag, pp 329–350

  4. 4.

    Androutsellis-Theotokis S, Spinellis D (2004) A survey of peer-to-peer content distribution technologies. ACM Comput Surv 36(4):335–371

    Article  Google Scholar 

  5. 5.

    Lua EK, Crowcroft J, Pias M, Sharma R, Lim S (2005) A survey and comparison of peer-to-peer overlay network schemes. IEEE Commun Surv Tutorials 7(2):72–93

    Article  Google Scholar 

  6. 6.

    Marti S, Garcia-Molina H (2006) Taxonomy of trust: categorizing P2P reputation systems. Comput Netw 50(4):472–484

    Article  MATH  Google Scholar 

  7. 7.

    Risson J, Moors T (2006) Survey of research towards robust peer-to-peer networks: search methods. Comput Netw 50(17):3485–3521

    Article  MATH  Google Scholar 

  8. 8.

    Meshkova E, Riihijärvi J, Petrova M, Mähönen P (2008) A survey on resource discovery mechanisms, peer-to-peer and service discovery frameworks. Comput Netw 52(11):2097–2128

    Article  Google Scholar 

  9. 9.

    Karrels DR, Peterson GL, Mullins BE (2009) Structured P2P technologies for distributed command and control. Peer-to-Peer Netw Appl 2:311–333

    Article  Google Scholar 

  10. 10.

    Urdaneta G, Pierre G, Steen MV (2011) A survey of DHT security techniques. ACM Comput Surv 43(2):8:1–8:49

    Article  Google Scholar 

  11. 11.

    Korzun D, Gurtov A (2011) Survey on hierarchical routing schemes in “flat” distributed hash tables. Peer-to-Peer Netw Appl 4:346–375

    Article  Google Scholar 

  12. 12.

    Passarella A (2012) A survey on content-centric technologies for the current internet: CDN and P2P solutions. Comput Commun 35(1):1–32

    Article  Google Scholar 

  13. 13.

    Götz S, Rieche S, Wehrle K (2005) Selected DHT algorithms. In: Steinmetz R, Wehrle K (eds) Peer-to-Peer systems and applications. Volume 3485 of lecture notes in computer science. Springer, Berlin / Heidelberg, pp 95–117

    Google Scholar 

  14. 14.

    Birman KP (2005) Reliable distributed systems: technologies, web services, and applications. Springer-Verlag, New York

    Google Scholar 

  15. 15.

    Buford JF, Yu H, Lua EK (2009) P2P networking and applications. Elsevier

  16. 16.

    Vu QH, Lupu M, Ooi BC (2010) Peer-to-Peer computing: principles and applications. Springer

  17. 17.

    Korzun D, Gurtov A (2013) Structured peer-to-peer systems: fundamentals of hierarchical organization, routing, scaling, and security. Springer

  18. 18.

    Kleinrock L, Kamoun F (1977) Hierarchical routing for large networks: performance evaluation and optimization. Comput Netw 1:155–174

    MathSciNet  Google Scholar 

  19. 19.

    Chiang M, Low SH, Calderbank AR, Doyle JC (2007) Layering as optimization decomposition: a mathematical theory of network architectures. Proc IEEE 95:255–312

    Article  Google Scholar 

  20. 20.

    Lian J, Naik K, Agnew GB (2007) A framework for evaluating the performance of cluster algorithms for hierarchical networks. IEEE/ACM Trans Netw 15:1478–1489

    Article  Google Scholar 

  21. 21.

    Lloret J, Palau C, Boronat F, Tomas J (2008) Improving networks using group-based topologies. Comput Commun 31:3438–3450

    Article  Google Scholar 

  22. 22.

    Xu J, Kumar A, Yu X (2004) On the fundamental tradeoffs between routing table size and network diameter in peer-to-peer networks. IEEE J Sel Areas Commun 22(1):151–163

    Article  MATH  Google Scholar 

  23. 23.

    Loguinov D, Kumar A, Rai V, Ganesh S (2005) Graph-theoretic analysis of structured peer-to-peer systems: routing distances and fault resilience. IEEE/ACM Trans Netw 13(5):1107–1120

    Article  Google Scholar 

  24. 24.

    Gummadi K, Gummadi R, Gribble S, Ratnasamy S, Shenker S, Stoica I (2003) The impact of DHT routing geometry on resilience and proximity. In: Proc. of ACM SIGCOMM’03. ACM Press, pp 381–394

  25. 25.

    Castro M, Drushel P, Ganesh A, Rowstron A, Wallach DS (2002) Secure routing for structured peer-to-peer overlay networks. In: Proc. 5th USENIX Symp. on operating system design and implementation (OSDI 2002). ACM Press, Boston, pp 299–314

    Google Scholar 

  26. 26.

    Kleinberg JM (2006) Complex networks and decentralized search algorithms. In: Proc. Int’l congress of mathematicians (ICM 2006). European Mathematical Society

  27. 27.

    Keshav S (2006) Efficient and decentralized computation of approximate global state. SIGCOMM Comput Commun Rev 36(1):69–74

    Article  Google Scholar 

  28. 28.

    Li J, Stribling J, Morris R, Kaashoek MF, Gil TM (2005) A performance vs. cost framework for evaluating DHT design tradeoffs under churn. In: Proc. of IEEE INFOCOM’05. Volume 1., IEEE, pp 225–236

  29. 29.

    Krishnamurthy B, Wang J, Xie Y (2001) Early measurements of a cluster-based architecture for P2P systems. In: Proc. 1st ACM SIGCOMM workshop on internet measurement (IMW ’01), ACM, pp 105–109

  30. 30.

    Ratnasamy S, Handley M, Karp R, Shenker S (2002) Topologically-aware overlay construction and server selection. In: Proc. of IEEE INFOCOM’02

  31. 31.

    Xu Z, Mahalingam M, Karlsson M (2003) Turning heterogeneity into an advantage in overlay routing. In: Proc. of IEEE INFOCOM’03, pp 1499–1509

  32. 32.

    Sánchez-Artigas M, García López P (2010) Echo: a peer-to-peer clustering framework for improving communication in DHTs. J Parallel Distrib Comput 70:126–143

    Article  MATH  Google Scholar 

  33. 33.

    Dabek F, Kaashoek MF, Karger D, Morris R, Stoica I (2001) Wide-area cooperative storage with CFS. In: Proc. 18th ACM Symp. Operating systems principles (SOSP ’01). ACM Press, pp 202–215

  34. 34.

    Rufino J, Alves A, Exposto J, Pina A (2004) A cluster oriented model for dynamically balanced DHTs. In: IPDPS’04: Proc. 18th Int’l Symp. on parallel and distributed processing. IEEE Computer Society

  35. 35.

    Surana S, Godfrey B, Lakshminarayanan K, Karp R, Stoica I (2006) Load balancing in dynamic structured peer-to-peer systems. Perform Eval 63(3):217–240

    Article  Google Scholar 

  36. 36.

    Tang C, Xu Z, Dwarkadas S (2003) Peer-to-peer information retrieval using self-organizing semantic overlay networks. In: Proc. of ACM SIGCOMM’03. ACM Press, pp 175–186

  37. 37.

    Wan Y, Asaka T, Takahashi T (2008) A hybrid P2P overlay network for non-strictly hierarchically categorized contents. In: Proc. 8th IEEE Int’l Symp. on Cluster Computing and the Grid (CCGRID ’08). IEEE Computer Society, pp 41–48

  38. 38.

    Xu M, Zhou S, Guan J (2011) A new and effective hierarchical overlay structure for Peer-to-Peer networks. Comput Commun 34(7):862–874

    Article  Google Scholar 

  39. 39.

    Asiki A, Tsoumakos D, Koziris N (2010) Distributing and searching concept hierarchies: an adaptive DHT-based system. Clust Comput 13(3):257–276

    Article  Google Scholar 

  40. 40.

    Yang B, Garcia-Molina H (2003) Designing a super-peer network. In: Proc. 19th Int’l Conf. on data engineering (ICDE’03), pp 49–60

  41. 41.

    Zoels S, Despotovic Z, Kellerer W (2008) On hierarchical DHT systems—an analytical approach for optimal designs. Comput Commun 31(3):576–590

    Article  Google Scholar 

  42. 42.

    Ou Z, Harjula E, Koskela T, Ylianttila M (2010) GTPP: general truncated pyramid peer-to-peer architecture over structured DHT networks. Mob Netw Appl 15:729–749

    Article  Google Scholar 

  43. 43.

    Mislove A, Druschel P (2004) Providing administrative control and autonomy in structured peer-to-peer overlays. In: IPTPS ’04: Proc. 3rd Int’l workshop on peer-to-peer systems. Volume 3279 of lecture notes in computer science. Springer, pp 162–172

  44. 44.

    Karger DR, Ruhl M (2004) Diminished chord: a protocol for heterogeneous subgroup formation in peer-to-peer networks. In: IPTPS ’04: Proc. 3rd Int’l workshop on peer-to-peer systems. Volume 3279 of lecture notes in computer science. Springer, pp 288–297

  45. 45.

    Zhang Y, Li D, Chen L, Lu X (2008) Flexible routing in grouped DHTs. In: Proc. 8th IEEE Int’l Conf. on peer-to-peer computing (P2P ’08). IEEE Computer Society, pp 109–118

  46. 46.

    Zhao BY, Huang L, Stribling J, Rhea SC, Joseph AD, Kubiatowicz JD (2004) Tapestry: a resilient global-scale overlay for service deployment. IEEE J Sel Areas Commun 22(1):41–53

    Article  Google Scholar 

  47. 47.

    Maymounkov P, Mazières D (2002) Kademlia: a peer-to-peer information system based on the XOR metric. In: IPTPS ’02: Proc. 1st Int’l workshop on peer-to-peer systems. Volume 2429 of lecture notes in computer science. Springer, pp 53–65

  48. 48.

    Malkhi D, Naor M, Ratajczak D (2002) Viceroy: a scalable and dynamic emulation of the butterfly. In: Proc. 21st Annual Symp. on principles of distributed computing (PODC ’02). ACM Press, pp 183–192

  49. 49.

    Manku GS, Bawa M, Raghavan P (2003) Symphony: distributed hashing in a small world. In: Proc. 4th USENIX Symp. on internet technologies and systems (USITS’03). USENIX Association, pp 127–140

  50. 50.

    Gai AT, Viennot L (2004) Broose: a practical distributed hashtable based on the De-Bruijn topology. In: Proc. IEEE 4th Int’l Conf. on peer-to-peer computing (P2P ’04). IEEE Computer Society, pp 167–164

  51. 51.

    Karger D, Lehman E, Leighton T, Panigrahy R, Levine M, Lewin D (1997) Consistent hashing and random trees: distributed caching protocols for relieving hot spots on the world wide web. In: Proc. 29th Annual ACM Symp. on theory of computing (STOC ’97), ACM, pp 654–663

  52. 52.

    Kleinberg JM (2000) The small-world phenomenon: an algorithm perspective. In: Proc. 32nd Annual ACM Symp. theory of computing (STOC ’00). ACM Press, pp 163–170

  53. 53.

    Kempe D, Kleinberg J, Demers A (2004) Spatial gossip and resource location protocols. J ACM 51:943–967

    Article  MATH  MathSciNet  Google Scholar 

  54. 54.

    Korzun D, Nechaev B, Gurtov A (2009) Cyclic routing: generalizing lookahead in peer-to-peer networks. In: Proc. 7th IEEE/ACS Int’l Conf. on computer systems and applications (AICCSA2009). IEEE Computer Society, pp 697–704

  55. 55.

    Duchon P, Hanusse N, Lebhar E, Schabanel N (2006) Towards small world emergence. In: Proc. 18th Annual ACM Symp. on parallelism in algorithms and architectures (SPAA ’06), ACM, pp 225–232

  56. 56.

    Viswanath B, Post A, Gummadi KP, Mislove A (2010) An analysis of social network-based sybil defenses. In: Proc. ACM SIGCOMM 2010 Conf. applications, technologies, architectures, and protocols for computer communication, ACM, pp 363–374

  57. 57.

    Risson J, Qazi S, Moors T, Harwood A (2006) A dependable global location service using rendezvous on hierarchic distributed hash tables. In: Proc. Int’l Conf. networking, Int’l Conf. systems and Int’l Conf. mobile communications and learning technologies (ICN/ICONS/MCL ’06). IEEE Computer Society

  58. 58.

    Singh A, Liu L (2004) A hybrid topology architecture for P2P systems. In: Proc. 13th Int’l Conf. on computer communications and networks (ICCCN 2004), pp 475–480

  59. 59.

    Tian R, Xiong Y, Zhang Q, Li B, Zhao BY, Li X (2005) Hybrid overlay structure based on random walks. In: IPTPS ’05: Proc. 4th Int’l workshop on peer-to-peer systems. Volume 3640 of lecture notes in computer science. Springer, pp 152–162

  60. 60.

    Artigas MS, Lopez PG, Ahullo JP, Skarmeta AFG (2005) Cyclone: a novel design schema for hierarchical DHTs. In: Proc. 5th IEEE Int’l Conf. on peer-to-peer computing (P2P ’05). IEEE Computer Society, pp 49–56

  61. 61.

    Hu J, Li M, Zheng W, Wang D, Ning N, Dong H (2004) Smartboa: constructing P2P overlay network in the heterogeneous Internet using irregular routing tables. In: IPTPS ’04: Proc. 3rd Int’l workshop on peer-to-peer systems. Volume 3279 of lecture notes in computer science. Springer, pp 278–287

  62. 62.

    Leong B, Liskov B, Demaine E (2004) Epichord: parallelizing the Chord lookup algorithm with reactive routing state management. In: Proc. 12th Int’l Conf. on networks (ICON 2004), pp 270–276

  63. 63.

    Li J, Stribling J, Morris R, Kaashoek MF (2005) Bandwidth-efficient management of DHT routing tables. In: Proc. of the 2nd symposium on networked systems design and implementation (NSDI ’05), pp 99–114

  64. 64.

    Garcés-Erice L, Biersack E, Felber PA, Ross KW, Urvoy-Keller G (2003) Hierarchical peer-to-peer systems. In: Proc. ACM/IFIP Int’l Conf. on parallel and distributed computing (Euro-Par 2003), pp 643–657

  65. 65.

    Li X, Wu J (2004) Hierarchical P2P systems in a small world. In: Proc. 2nd Latin American and Caribbean Conf. for engineering and technology (LACCEI’2004)

  66. 66.

    Lee JW, Schulzrinne H, Kellerer W, Despotovic Z (2009) mDHT: multicast-augmented DHT architecture for high availability and immunity to churn. In: Proc. 6th IEEE Conf. consumer communications and networking conference (CCNC’09), IEEE, pp 760–764

  67. 67.

    Gupta I, Birman K, Linga P, Demers A, van Renesse R (2003) Kelips: building an efficient and stable P2P DHT through increased memory and background overhead. In: IPTPS ’03: Proc. 2nd Int’l workshop on peer-to-peer systems. Volume 2735 of lecture notes in computer science. Springer, pp 160–169

  68. 68.

    Mizrak AT, Cheng Y, Kumar V, Savage S (2003) Structured superpeers: leveraging heterogeneity to provide constant-time lookup. In: Proc. 3rd IEEE workshop on internet applications (WIAPP 2003), pp 104–111

  69. 69.

    Gupta A, Liskov B, Rodrigues R (2004) Efficient routing for peer-to-peer overlays. In: Proc. 1st Symp. on networked systems design and implementation (NSDI ’04)

  70. 70.

    Fonseca P, Rodrigues R, Gupta A, Liskov B (2009) Full-information lookups for peer-to-peer overlays. IEEE Trans Parallel Distrib Syst 20(9):1339–1351

    Article  Google Scholar 

  71. 71.

    Monnerat LR, Amorim CL (2009) Peer-to-peer single hop distributed hash tables. In: Proc. of IEEE Globecom’09

  72. 72.

    Risson J, Harwood A, Moors T (2006) Stable high-capacity one-hop distributed hash tables. In: ISCC ’06: Proc. 11th IEEE Symp. on computers and communications. IEEE Computer Society, pp 687–694

  73. 73.

    Zoels S, Despotovic Z, Kellerer W (2006) Cost-based analysis of hierarchical DHT design. In: Proc. 6th IEEE Int’l Conf. on peer-to-peer computing (P2P ’06). IEEE Computer Society, pp 233–239

  74. 74.

    Zöls S, Hofstätter Q, Despotovic Z, Kellerer W (2009) Achieving and maintaining cost-optimal operation of a hierarchical DHT system. In: Proc. 2009 IEEE Int’l Conf. on communications (ICC’09). IEEE Press, pp 2194–2199

  75. 75.

    Zoels S, Despotovic Z, Kellerer W (2007) Load balancing in a hierarchical DHT-based P2P system. In: Proc. 2007 Int’l Conf. collaborative computing: networking, applications and worksharing (COLCOM ’07). IEEE Computer Society, pp 353–361

  76. 76.

    Ren XJ, Gu ZM (2007) SA-Chord: a novel P2P system based on self-adaptive joining. In: Proc. 6th Int’l Conf. grid and cooperative computing (GCC 2007). IEEE Computer Society, pp 75–81

  77. 77.

    Artigas MS, Lopez PG, Skarmeta AFG (2005) A novel methodology for constructing secure multipath overlays. IEEE Internet Comput 9(6):50–57

    Article  Google Scholar 

  78. 78.

    Zoels S, Eichhorn M, Tarlano A, Kellerer W (2006) Content-based hierarchies in DHT-based peer-to-peer systems. In: Proc. Int’l Symp. applications and the internet workshops (SAINT Workshops 2006). IEEE Computer Society, pp 105–108

  79. 79.

    Zhang XM, Wang YJ, Li Z (2007) Research of routing algorithm in hierarchy-adaptive P2P systems. In: Proc. 5th Int’l Symp. parallel and distributed processing and applications (ISPA 2007). Volume 4742 of lecture notes in computer science. Springer, pp 728–739

  80. 80.

    Xu Z, Zhang Z (2002) Building low-maintenance expressways for P2P systems. Techical Report HPL-2002-41, HP Labs, Palo Alto

  81. 81.

    Zhang Z, Shi SM, Zhu J (2002) Self-balanced P2P expressway: when Marxism meets Confucian. Techical Report MSR-TR-2002-72, Microsoft Research Asia

  82. 82.

    Joung YJ, Wang JC (2007) Chord2: a two-layer chord for reducing maintenance overhead via heterogeneity. Comput Commun 51(3):712–731

    MATH  Google Scholar 

  83. 83.

    Tanta-ngai H, McAllister M (2006) A peer-to-peer expressway over chord. Math Comput Model 44(7–8):659–677

    Article  MATH  MathSciNet  Google Scholar 

  84. 84.

    Martinez-Yelmo I, Cuevas R, Guerrero C, Mauthe A (2008) Routing performance in a hierarchical DHT-based overlay network. In: Proc. 16th Euromicro Conf. parallel, distributed and network-based processing (PDP 2008). IEEE Computer Society, pp 508–515

  85. 85.

    Martinez-Yelmo I, Bikfalvi A, Guerrero C, Rumin RC, Mauthe A (2008) Enabling global multimedia distributed services based on hierarchical DHT overlay networks. Int J Internet Protocol Technol (IJIPT) 3(4):234–244

    Article  Google Scholar 

  86. 86.

    Martinez-Yelmo I, Guerrero C, Rumín RC, Mauthe A (2009) A hierarchical P2PSIP architecture to support skype-like services. In: Proc. 17th Euromicro Int’l Conf. parallel, distributed and network-based processing (PDP 2009). IEEE Computer Society, pp 316–322

  87. 87.

    Min SH, Holliday J, Cho DS (2006) Optimal super-peer selection for large-scale P2P system. In: Proc. 2006 Int’l Conf. hybrid information technology (ICHIT ’06). IEEE Computer Society, pp 588–593

  88. 88.

    Le L, Kuo GS (2007) Hierarchical and breathing peer-to-peer SIP system. In: Proc. IEEE Int’l Conf. communications (ICC 2007). IEEE, pp 1887–1892

  89. 89.

    Heristyo A, Masuyama H, Kasahara S, Takahashi Y (2009) User-search time analysis for hierarchical peer-to-peer overlay networks with time-dependent user-population process. In: Proc. 4th Int’l Conf. queueing theory and network applications (QTNA’09). ACM, pp 5:1–5:4

  90. 90.

    Guisheng Y, Jie S, Xianghui W (2008) Hierarchical small-world P2P networks. In: Proc. Int’l Conf. internet computing in science and engineering (ICICSE ’08). IEEE Computer Society, pp 452–458

  91. 91.

    Mesaros VA, Carton B, Roy PV (2003) S-Chord: using symmetry to improve lookup efficiency in chord. In: Proc. Int’l Conf. parallel and distributed processing techniques and applications (PDPTA’03)

  92. 92.

    Ganesan P, Manku GS (2004) Optimal routing in chord. In: Proc. 15th annual ACM-SIAM Symp. Discrete algorithms (SODA ’04). Society for Industrial and Applied Mathematics, pp 176–185

  93. 93.

    Zhao BY, Duan Y, Huang L, Joseph AD, Kubiatowicz JD (2002) Brocade: landmark routing on overlay networks. In: IPTPS ’02: Proc. 1st Int’l workshop on peer-to-peer systems. Volume 2429 of lecture notes in computer science. Springer, pp 34–44

  94. 94.

    Xu Z, Tang C, Zhang Z (2003) Building topology-aware overlays using global soft-state. In: Proc. 23rd Int’l Conf. distributed computing systems (ICDCS’03). IEEE Computer Society, pp 500–508

  95. 95.

    Zhu Y, Wang H, Hu Y (2003) A super-peer based lookup in structured peer-to-peer systems. In: Proc. ISCA 16th Int’l Conf. parallel and distributed computing systems (PDCS 2003), pp 465–470

  96. 96.

    Freedman MJ, Mazières D (2003) Sloppy hashing and self-organizing clusters. In: IPTPS ’03: Proc. 2nd Int’l workshop on peer-to-peer systems. Volume 2735 of lecture notes in computer science. Springer, pp 45–55

  97. 97.

    Xu Z, Min R, Hu Y (2003) HIERAS: a DHT based hierarchical P2P routing algorithm. In: Proc. 32nd Int’l Conf. parallel processing (ICPP 2003). IEEE Computer Society, pp 187–194

  98. 98.

    Park K, Pack S, Kwon T (2008) Proximity based peer-to-peer overlay networks (P3ON) with load distribution. In: Proc. Int’l Conf. information networking (ICOIN 2007). Towards ubiquitous networking and services. Revised selected papers. Springer-Verlag, pp 234–243

  99. 99.

    Xu J, Jin H (2009) A structured P2P network based on the small world phenomenon. J Supercomput 48:264–285

    Article  Google Scholar 

  100. 100.

    Garcés-Erice L, Ross KW, Biersack EW, Felber P, Urvoy-Keller G (2003) Topology-centric look-up service. In: Proc. 5th Int’l Conf. group communications and charges (NGC 2003), workshop on networked group communication. Volume 2816 of lecture notes in computer science. Springer, pp 58–69

  101. 101.

    Ganesan P, Gummadi K, Garcia-Molina H (2004) Canon in G major: designing DHTs with hierarchical structure. In: Proc. 24th Int’l Conf. distributed computing systems (ICDCS ’04). IEEE Computer Society, pp 263–272

  102. 102.

    Zhang Y, Chen L, Lu X, Li D (2010) Enabling routing control in a DHT. IEEE J Sel Areas Commun 28(1):28–38

    Article  Google Scholar 

  103. 103.

    Bermond JC, Choplin S, Prennes S (2003) Hierarchical ring network design. Theory Comput Syst 36:663–682

    Article  MATH  MathSciNet  Google Scholar 

  104. 104.

    Artigas MS, Lopez PG, Skarmeta AF (2007) A comparative study of hierarchical DHT systems. In: Proc. 32nd IEEE Conf. on local computer networks (LCN ’07). IEEE Computer Society, pp 325–333

  105. 105.

    D’Ambrosio M, Dannewitz C, Karl H, Vercellone V (2011) MDHT: a hierarchical name resolution service for information-centric networks. In: Proc. ACM SIGCOMM workshop on Information-centric networking (ICN ’11). ACM, pp 7–12

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Andrei Gurtov.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Korzun, D., Gurtov, A. Hierarchical architectures in structured peer-to-peer overlay networks. Peer-to-Peer Netw. Appl. 7, 359–395 (2014). https://doi.org/10.1007/s12083-013-0200-z

Download citation

Keywords

  • P2P
  • DHT
  • Hierarchy
  • Heterogeneity
  • Scalability
  • Performance
  • Survey