Skip to main content

Examining the generality of the biphasic transition from niche-structured to immigration-structured communities

Abstract

Theoretical and empirical studies suggest that as immigration increases, ecological communities transition from a niche-structured regime to an immigration-structured regime. The niche-structured regime is the domain of classic niche models; the immigration-structured regime is the domain of island biogeography and related theories. A recent unified model predicted a biphasic species–area relationship (SAR) arising from the transition between the two regimes, but the generality and scope of this relationship remain unclear. Here we study the transition further to address three key questions: (1) Can MacArthur and Wilson’s classic graphical paradigm of intersecting immigration and extinction curves be adapted to capture the niche-structured regime that occurs at low-immigration rates? (2) Do different ecological models predict a similar biphasic SAR? (3) Can the biphasic island SAR be reconciled with the classic triphasic SAR observed in mainland biogeography? On the first point, we find that the transition can be incorporated into MacArthur and Wilson’s graphical paradigm by forcing the extinction curves sharply downwards at low species richness, reflecting the stabilizing effect of niche processes. On the second point, we confirm that a variety of simple ecological models produce qualitatively similar biphasic SARs. On the third point, we find that a unified model predicts an overall four-phase SAR with the second phase being a shallow niche-structured phase that is rarely observed in mainland SARs, which we hypothesize is because local communities on mainlands are usually in the immigration-structured regime.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Availability of data and material

Not applicable.

Code availability

See Appendix S4.

References

  • Amarasekare P, Nisbet RM (2001) Spatial heterogeneity, source-sink dynamics, and the local coexistence of competing species. Am Nat 158:572–584

    Article  CAS  PubMed  Google Scholar 

  • Caswell H, Cohen JE (1993) Local and regional regulation of species-area relations: a patch-occupancy model.in R. E. Ricklefs and D. Schluter, editors. Species diversity in ecological communities: historical and geographical perspectives. The University of Chicago Press, Chicago

  • Cazelles K, Mouquet N, Mouillot D, Gravel D (2016) On the integration of biotic interaction and environmental constraints at the biogeographical scale. Ecography 39:921–931

    Article  Google Scholar 

  • Chase JM, McGill BJ, McGlinn DJ, May F, Blowes SA, Xiao X, Knight TM, Purschke O, Gotelli NJ (2018) Embracing scale-dependence to achieve a deeper understanding of biodiversity and its change across communities. Ecol Lett 21:1737–1751

    Article  PubMed  Google Scholar 

  • Chase JM, Myers JA (2011) Disentangling the importance of ecological niches from stochastic processes across scales. Philosophical Transactions of the Royal Society b: Biological Sciences 366:2351–2363

    Article  Google Scholar 

  • Chisholm RA, Fung T, Chimalakonda D, O’Dwyer JP (2016) Maintenance of biodiversity on islands. Proceedings of the Royal Society B: Biol Sci 283

  • Chisholm RA, Lichstein JW (2009) Linking dispersal, immigration and scale in the neutral theory of biodiversity. Ecol Lett 12:1385–1393

    Article  PubMed  Google Scholar 

  • Chisholm RA, Muller-Landau H (2011) A theoretical model linking interspecific variation in density dependence to species abundances. Thyroid Res 4:241–253

    Google Scholar 

  • Chisholm RA, Pacala SW (2010) Niche and neutral models predict asymptotically equivalent species abundance distributions in high-diversity ecological communities. Proc Natl Acad Sci USA 107:15821–15825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chisholm RA, Pacala SW (2011) Theory predicts a rapid transition from niche-structured to neutral biodiversity patterns across a speciation-rate gradient. Thyroid Res 4:195–200

    Google Scholar 

  • Constable GWA, McKane AJ (2015) Models of genetic drift as limiting forms of the Lotka-Volterra competition model. Phys Rev Lett 114:038101

  • Diamond JM (1975) The island dilemma: lessons of modern biogeographic studies for the design of natural reserves. Biol Cons 7:129–146

    Article  Google Scholar 

  • Ellison AM, Farnsworth EJ, Merkt RE (1999) Origins of mangrove ecosystems and the mangrove biodiversity anomaly. Glob Ecol Biogeogr 8:95–115

    Google Scholar 

  • Gause GF (1934) The struggle for existence. Williams and Wilkins, Baltimore, MD

    Book  Google Scholar 

  • Gilbert B, Levine JM (2017) Ecological drift and the distribution of species diversity. Proceedings of the Royal Society b: Biological Sciences 284:20170507

    Article  PubMed  PubMed Central  Google Scholar 

  • Gilpin ME, Diamond JM (1976) Calculation of immigration and extinction curves from the species–area–distance relation. Proc Natl Acad Sci 73:4130–4134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goh BS, Jennings LS (1977) Feasibility and stability in randomly assembled Lotka-Volterra models. Ecol Model 3:63–71

    Article  Google Scholar 

  • Gravel D, Canham CD, Beaudet M, Messier C (2006) Reconciling niche and neutrality: the continuum hypothesis. Ecol Lett 9:399–409

    Article  PubMed  Google Scholar 

  • Hanski I, Peltonen A (1988) Island colonization and peninsulas. Oikos 51:105–106

    Article  Google Scholar 

  • Haoqi L, Guanghui L (2019) Biomass energy flow between species and species survival in fragmented landscapes. Ecol Complex 37:1–10

    Article  Google Scholar 

  • Hardin G (1960) The competitive exclusion principle. Science 131:1292–1297

    Article  CAS  Google Scholar 

  • Hargrove WW, Hoffman FM, Schwartz PM (2002) A fractal landscape realizer for generating synthetic maps. Conserv Ecol 6

  • Heatwole H, Levins R (1973) Biogeography of the Puerto Rican Bank: species-turnover on a small cay, Cayo Ahogado. Ecology 54:1042–1055

    Article  Google Scholar 

  • Holt RD (1977) Predation, apparent competition, and the structure of prey communities. Theor Popul Biol 12:197–229

    Article  CAS  PubMed  Google Scholar 

  • Hortal J, Triantis KA, Meiri S, Thébault E, Sfenthourakis S (2009) Island species richness increases with habitat diversity. Am Nat 174:E205-217

    Article  PubMed  Google Scholar 

  • Hubbell SP (2001) The unified neutral theory of biodiversity and biogeography. Princeton University Press, Princeton, NJ

    Google Scholar 

  • Huisman J, Johansson AM, Folmer EO, Weissing FJ (2001) Towards a solution of the plankton paradox: the importance of physiology and life history. Ecol Lett 4:408–411

    Article  Google Scholar 

  • Huisman J, Weissing FJ (1999) Biodiversity of plankton by species oscillations and chaos. Nature 402:407–410

    Article  Google Scholar 

  • Kadmon R, Allouche O (2007) Integrating the effects of area, isolation, and habitat heterogeneity on species diversity: a unification of island biogeography and niche theory. Am Nat 170:443–454

    Article  PubMed  Google Scholar 

  • Kohn DD, Walsh DM (1994) Plant species richness–the effect of island size and habitat diversity. J Ecol 82:367–377

    Article  Google Scholar 

  • Lande R (1993) Risks of population extinction from demographic and environmental stochasticity and random catastrophes. Am Nat 142:911–927

    Article  PubMed  Google Scholar 

  • Leibold MA, McPeek MA (2006) Coexistence of the niche and neutral perspectives in community ecology. Ecology 87:1399–1410

    Article  PubMed  Google Scholar 

  • Levine JM, HilleRisLambers J (2009) The importance of niches for the maintenance of species diversity. Nature 461:254-U130

    Article  CAS  Google Scholar 

  • Loke LH, Chisholm RA, Todd PA (2019) Effects of habitat area and spatial configuration on biodiversity in an experimental intertidal community. Ecology 100:e02757

  • Lomolino MV (1990) The target area hypothesis: the influence of island area on immigration rates of non-volant mammals. Oikos 57:297–300

    Article  Google Scholar 

  • Lomolino MV (2000) Ecology’s most general, yet protean pattern: the species–area relationship. J Biogeogr 27:17–26

    Article  Google Scholar 

  • Lomolino MV, Weiser MD (2001) Towards a more general species–area relationship: diversity on all islands, great and small. J Biogeogr 28:431–445

    Article  Google Scholar 

  • Loreau M, Mouquet N (1999) Immigration and the maintenance of local species diversity. Am Nat 154:427–440

    Article  PubMed  Google Scholar 

  • Losos JB, Schluter D (2000) Analysis of an evolutionary species–area relationship. Nature 408:847–850

    Article  CAS  PubMed  Google Scholar 

  • Lotka AJ (1925) Elements of physical biology. Dover, New York

    Google Scholar 

  • MacArthur R, Levins R (1967) Limiting similarity, convergence and divergence of coexisting species. Am Nat 101:377–385

    Article  Google Scholar 

  • MacArthur RH (1958) Population ecology of some warblers of northeastern coniferous forests. Ecology 39:599–619

    Article  Google Scholar 

  • MacArthur RH (1965) Patterns of species diversity. Biol Rev 40:510–533

    Article  Google Scholar 

  • MacArthur RH, Wilson EO (1963) An equilibrium theory of insular zoogeography. Evolution 17:373–387

    Article  Google Scholar 

  • MacArthur RH, Wilson EO (1967) The theory of island biogeography. Princeton University Press, Princeton, NJ

    Google Scholar 

  • Matthews TJ, Whittaker RJ (2014) Neutral theory and the species abundance distribution: recent developments and the prospects for unifying niche and neutral perspectives. Ecol Evol 4:2263–2277

    PubMed  PubMed Central  Google Scholar 

  • Muller-Landau HC, Wright SJ, Calderon O, Condit R, Hubbell SP (2008) Interspecific variation in primary seed dispersal in a tropical forest. J Ecol 96:653–667

    Article  Google Scholar 

  • O’Dwyer JP, Cornell S (2018) Cross-scale ecological theory sheds light on the maintenance of biodiversity. Sci Rep 8:10200

    Article  PubMed  PubMed Central  Google Scholar 

  • Patrick R (1967) The effect of invasion rate, species pool, and size of area on the structure of the diatom community. Proc Natl Acad Sci 58:1335–1342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perlin K (1985) An image synthesizer. SIGGRAPH. Computer Graphics 19:287–296

    Article  Google Scholar 

  • Preston FW (1960) Time and space and the variation of species. Ecology 41:611–627

    Article  Google Scholar 

  • Ricklefs RE (1987) Community diversity: relative roles of local and regional processes. Science 235:167–171

    Article  CAS  PubMed  Google Scholar 

  • Ricklefs RE, Cox GW (1972) Taxon cycles in the West Indian avifauna. Am Nat 106:195–219

    Article  Google Scholar 

  • Ricklefs RE, He F (2016) Region effects influence local tree species diversity. Proc Natl Acad Sci 113:674–679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ricklefs RE, Lovette IJ (1999) The roles of island area per se and habitat diversity in the species–area relationships of four Lesser Antillean faunal groups. J Anim Ecol 68:1142–1160

    Article  Google Scholar 

  • Roberts CM, McClean CJ, Veron JEN, Hawkins JP, Allen GR, McAllister DE, Mittermeier CG, Schueler FW, Spalding M, Wells F, Vynne C, Werner TB (2002) Marine biodiversity hotspots and conservation priorities for tropical reefs. Science 295:1280–1284

    Article  CAS  PubMed  Google Scholar 

  • Rosenzweig ML (1995) Species diversity in space and time. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Rosindell J, Cornell SJ (2007) Species-area relationships from a spatially explicit neutral model in an infinite landscape. Ecol Lett 10:586–595

    Article  PubMed  Google Scholar 

  • Rosindell J, Phillimore AB (2011) A unified model of island biogeography sheds light on the zone of radiation. Ecol Lett 14:552–560

    Article  PubMed  Google Scholar 

  • Rosindell J, Wong Y, Etienne RS (2008) A coalescence approach to spatial neutral ecology. Eco Inform 3:259–271

    Article  Google Scholar 

  • Schippers P, Verschoor AM, Vos M, Mooij WM (2001) Does “supersaturated coexistence” resolve the “paradox of the plankton”? Ecol Lett 4:404–407

    Article  Google Scholar 

  • Schoener TW (1983) Rate of species turnover decreases from lower to higher organisms: a review of the data. Oikos 41:372–377

    Article  Google Scholar 

  • Shmida A, Wilson MV (1985) Biological determinants of species-diversity. J Biogeogr 12:1–20

    Article  Google Scholar 

  • Shoemaker LG, Melbourne BA (2016) Linking metacommunity paradigms to spatial coexistence mechanisms. Ecology 97:2436–2446

    Article  PubMed  Google Scholar 

  • Smith VH, Foster BL, Grover JP, Holt RD, Leibold MA, deNoyelles F (2005) Phytoplankton species richness scales consistently from laboratory microcosms to the world’s oceans. Proc Natl Acad Sci USA 102:4393–4396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song X, Lim JY, Yang J, Luskin MS (2021) When do Janzen-Connell effects matter? A phylogenetic meta-analysis of conspecific negative distance and density dependence experiments. Ecol Lett 24:608–620

    Article  PubMed  Google Scholar 

  • Storch D, Keil P, Jetz W (2012) Universal species-area and endemics-area relationships at continental scales. Nature 488:78–81

    Article  CAS  PubMed  Google Scholar 

  • Svenning J-C, Skov F (2007) Could the tree diversity pattern in Europe be generated by postglacial dispersal limitation. Ecol Lett 10:453–460

    Article  PubMed  Google Scholar 

  • Terborgh J (2012) Enemies maintain hyperdiverse tropical forests. Am Nat 179:303–314

    Article  PubMed  Google Scholar 

  • Thompson PL, Guzman LM, De Meester L, Horváth Z, Ptacnik R, Vanschoenwinkel B, Viana DS, Chase JM (2020a) A process-based metacommunity framework linking local and regional scale community ecology. Ecol Lett 23:1314–1329

    Article  PubMed  PubMed Central  Google Scholar 

  • Thompson SED, Chisholm RA, Rosindell J (2020b) pycoalescence and rcoalescence: packages for simulating spatially explicit neutral models of biodiversity. Methods Ecol Evol 11:1237–1246

    Article  Google Scholar 

  • Tilman D (1977) Resource competition between planktonic algae: an experimental and theoretical approach. Ecology 58:338–348

    Article  CAS  Google Scholar 

  • Tilman D (1981) Tests of resource competition theory using four species of Lake Michigan algae. Ecology 62:802–815

    Article  Google Scholar 

  • Tilman D (2004) Niche tradeoffs, neutrality, and community structure: a stochastic theory of resource competition, invasion, and community assembly. Proc Natl Acad Sci USA 101:10854–10861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Volkov I, Banavar JR, Hubbell SP, Maritan A (2003) Neutral theory and relative species abundance in ecology. Nature 424:1035–1037

    Article  CAS  PubMed  Google Scholar 

  • Volkov I, Banavar JR, Hubbell SP, Maritan A (2007) Patterns of relative species abundance in rainforests and coral reefs. Nature 450:45

    Article  CAS  PubMed  Google Scholar 

  • Volterra V (1926) Fluctuations in the abundance of a species considered mathematically. Nature 118:558–560

    Article  Google Scholar 

  • Whitehead DR, Jones CE (1969) Small islands and the equilibrium theory of insular biogeography. Evolution 23:171–179

    Article  PubMed  Google Scholar 

  • Wright SJ (1981) Intra-archipelago vertebrate distributions: the slope of the species-area relation. Am Nat 118:726–748

    Article  Google Scholar 

  • Wright SJ (2002) Plant diversity in tropical forests: a review of mechanisms of species coexistence. Oecologia 130:1–14

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank James O’Dwyer and Matthew Luskin for comments on earlier versions of the manuscript.

Funding

This work was supported by a grant to R.A.C. from the James. S. McDonnell Foundation (#220020470).

Author information

Authors and Affiliations

Authors

Contributions

R.A.C. conceived of the project and wrote the initial draft. Both authors conducted analyses and edited subsequent drafts.

Corresponding author

Correspondence to Ryan A. Chisholm.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 41 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chisholm, R.A., Fung, T. Examining the generality of the biphasic transition from niche-structured to immigration-structured communities. Theor Ecol 15, 1–16 (2022). https://doi.org/10.1007/s12080-021-00521-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12080-021-00521-x

Keywords

  • Niche theory
  • Island biogeography theory
  • Neutral theory
  • Dispersal
  • Immigration–extinction balance
  • MacArthur’s paradox