Patch centrality affects metapopulation dynamics in small freshwater ponds

Abstract

Despite advances in metapopulation theory, recent studies have emphasized the difficulty in understanding and accurately predicting dynamics in nature. We address this knowledge gap by coupling 4 years of population data for the freshwater zooplankter Daphnia pulex, inhabiting 38 newly established ponds in Upstate New York, with (i) a spatially explicit stochastic model and (ii) a deterministic model where we have averaged the spatial dependencies. By modifying the identity of ponds stocked/removed in our model, we examine the effects of network structure on metapopulation dynamics and local occupancy patterns. From these modeling exercises, we show that the centrality of ponds (stocked or removed) has contrasting effects on metapopulation persistence when selecting ponds to initially stock versus preserve. The pond network was not robust to the removal of centrally located ponds as the simulated removal of these ponds resulted in rapid collapse of the metapopulation. However, when initially founding a metapopulation, the location of patches did not influence occupancy dynamics. Because stochastic simulations can be computationally expensive, we also introduce a quantity for use in a simple differential equation model that encompasses all spatial information in a single variable. Using this quantity, we show how the output of our simple differential equation model matched the quasi-steady state of the stochastic simulations in networks characterized by high connectivity. The method we use is general enough to be applied in other systems and can provide insights for habitat conservation and restoration efforts including how network structure can drive spatiotemporal metapopulation dynamics.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Adler FR, Nuernberger B (1994) Persistence in patchy irregular landscapes. Theor Popul Biol 45:41–75. https://doi.org/10.1006/tpbi.1994.1003

    Article  Google Scholar 

  2. Albert CH, Rayfield B, Dumitru M, Gonzalez A (2017) Applying network theory to prioritize multispecies habitat networks that are robust to climate and land-use change. Conserv Biol 31:1383–1396. https://doi.org/10.1111/cobi.12943

    Article  PubMed  Google Scholar 

  3. Allen MR (2007) Measuring and modeling dispersal of adult zooplankton. Oecologia 153:135–143. https://doi.org/10.1007/s00442-007-0704-4

    Article  PubMed  Google Scholar 

  4. Altermatt F, Ebert D (2008) The influence of pool volume and summer desiccation on the production of the resting and dispersal stage in a Daphnia metapopulation. Oecologia 157:441–452. https://doi.org/10.1007/s00442-008-1080-4

    Article  PubMed  Google Scholar 

  5. Altermatt F, Ebert D (2010) Populations in small, ephemeral habitat patches may drive dynamics in a Daphnia magna metapopulation. Ecology 91:2975–2982. https://doi.org/10.1890/09-2016.1

    Article  PubMed  Google Scholar 

  6. Altermatt F, Pajunen VI, Ebert D (2008) Climate change affects colonization dynamics in a metacommunity of three Daphnia species. Glob Chang Biol 14:1209–1220. https://doi.org/10.1111/j.1365-2486.2008.01588.x

    Article  Google Scholar 

  7. Altermatt F, Pajunen VI, Ebert D (2009) Desiccation of rock pool habitats and its influence on population persistence in a Daphnia metacommunity. PLoS One 4:e4703. https://doi.org/10.1371/journal.pone.0004703

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. Anderson TL, Ousterhout BH, Peterman WE, Drake DL, Semlitsch RD (2015) Life history differences influence the impacts of drought on two pond-breeding salamanders. Ecol Appl 25:1896–1910. https://doi.org/10.1890/14-2096.1

    Article  PubMed  Google Scholar 

  9. Anthes N, Fartmann T, Hermann G, Kaule G (2003) Combining larval habitat quality and metapopulation structure - the key for successful management of pre-alpine Euphydryas aurinia colonies. J Insect Conserv 7:175–185. https://doi.org/10.1023/A:1027330422958

    Article  Google Scholar 

  10. Arntzen JW, Abrahams C, Meilink WRM, Iosif R, Zuiderwijk A (2017) Amphibian decline, pond loss and reduced population connectivity under agricultural intensification over a 38 year period. Biodivers Conserv 26:1411–1430. https://doi.org/10.1007/s10531-017-1307-y

    Article  Google Scholar 

  11. Artyomov MN, Das J, Kardar M, Chakraborty AK (2007) Purely stochastic binary decisions in cell signaling models without underlying deterministic bistabilities. Proc Natl Acad Sci U S A 104:18958–18963. https://doi.org/10.1073/pnas.0706110104

    Article  PubMed  PubMed Central  Google Scholar 

  12. Baguette M, Van Dyck H (2007) Landscape connectivity and animal behavior: functional grain as a key determinant for dispersal. Landsc Ecol 22:1117–1129. https://doi.org/10.1007/s10980-007-9108-4

    Article  Google Scholar 

  13. Bani R, Fortin MJ, Daigle RM, Guichard F (2019) Dispersal traits interact with dynamic connectivity to affect metapopulation growth and stability. Theor Ecol 12:111–127. https://doi.org/10.1007/s12080-018-0393-0

    Article  Google Scholar 

  14. Bascompte J, Solé RV (1996) Habitat fragmentation and extinction thresholds in spatially explicit models. J Anim Ecol 65:465–473

    Article  Google Scholar 

  15. Bender DJ, Contreras TA, Fahrig L (1998) Habitat loss and population decline: a meta-analysis of the patch size effect. Ecology 79:517–533. https://doi.org/10.1890/0012-9658(1998)079[0517:HLAPDA]2.0.CO;2

    Article  Google Scholar 

  16. Bengtsson J, Ebert D (1998) Distributions and impacts of microparasites on Daphnia in a rockpool metapopulation. Oecologia 115:213–221. https://doi.org/10.1007/s004420050510

    Article  PubMed  Google Scholar 

  17. Black AJ, McKane AJ (2012) Stochastic formulation of ecological models and their applications. Trends Ecol Evol 27:337–345. https://doi.org/10.1016/j.tree.2012.01.014

    Article  PubMed  Google Scholar 

  18. Bodin Ö, Saura S (2010) Ranking individual habitat patches as connectivity providers: integrating network analysis and patch removal experiments. Ecol Model 221:2393–2405. https://doi.org/10.1016/j.ecolmodel.2010.06.017

    Article  Google Scholar 

  19. Borthagaray AI, Pinelli V, Berazategui M et al (2015) Effects of metacommunity networks on local community structures: from theoretical predictions to empirical evaluations. In: Belgrano A, Woodward G, Jacob U (eds) Aquatic functional biodiversity: an ecological and evolutionary perspective. Academic, pp 75–111

  20. Breininger DR, Burgman MA, Akçakaya HR, O’Connell MA (2002) Use of metapopulation models in conservation planning. In: Gutzwiller KJ (ed) Applying landscape ecology in biological conservation. Springer, New York, pp 405–427

    Google Scholar 

  21. Broms KM, Hooten MB, Johnson DS, Altwegg R, Conquest LL (2016) Dynamic occupancy models for explicit colonization processes. Ecology 97:194–204. https://doi.org/10.1890/15-0416.1

    Article  PubMed  Google Scholar 

  22. Cáceres CE (1997) Temporal variation, dormancy, and coexistence: a field test of the storage effect. Proc Natl Acad Sci 94:9171–9175. https://doi.org/10.1073/pnas.94.17.9171

    Article  PubMed  Google Scholar 

  23. Cáceres CE, Soluk DA (2002) Blowing in the wind: a field test of overland dispersal and colonization by aquatic invertebrates. Oecologia 131:402–408. https://doi.org/10.1007/S00442-002-0897-5

    Article  PubMed  Google Scholar 

  24. Calabrese JM, Fagan WF (2004) A comparison-shopper’s guide to connectivity metrics. Front Ecol Environ 2:529–536. https://doi.org/10.1890/1540-9295(2004)002[0529:ACGTCM]2.0.CO;2

    Article  Google Scholar 

  25. Caswell H, Etter RJ (1993) Ecological interactions in patchy environments: from patch-occupancy models to cellular automata. In: Levin SA, Powell TM, Steele JH (eds) Patch dynamics. Springer, Berlin, pp 93–109

    Google Scholar 

  26. Chandler RB, Muths E, Sigafus BH, Schwalbe CR, Jarchow CJ, Hossack BR (2015) Spatial occupancy models for predicting metapopulation dynamics and viability following reintroduction. J Appl Ecol 52:1325–1333. https://doi.org/10.1111/1365-2664.12481

    Article  Google Scholar 

  27. Chapman MG (2013) Constructing replacement habitat for specialist and generalist molluscs-the effect of patch size. Mar Ecol Prog Ser 473:201–214. https://doi.org/10.3354/meps10074

    Article  Google Scholar 

  28. Cote J, Bestion E, Jacob S, Travis J, Legrand D, Baguette M (2017) Evolution of dispersal strategies and dispersal syndromes in fragmented landscapes. Ecography 40:56–73. https://doi.org/10.1111/ecog.02538

    Article  Google Scholar 

  29. Dallas T, Saastamoinen M, Schultz T, Ovaskainen O (2019) The relative importance of local and regional processes to metapopulation dynamics. J Anim Ecol 00:1–13. https://doi.org/10.2307/2256210

    CAS  Article  Google Scholar 

  30. Day JR, Possingham HP (1995) A stochastic metapopulation model with variability in patch size and position. Theor Popul Biol 48:333–360. https://doi.org/10.1006/tpbi.1995.1034

    Article  Google Scholar 

  31. Dorazio RM, Kéry M, Royle JA, Plattner M (2010) Models for inference in dynamic metacommunity systems. Ecology 91:2466–2475

    Article  Google Scholar 

  32. Durrett R, Levin S (1994a) The importance of being discrete (and spatial). Theor Popul Biol 46:363–394. https://doi.org/10.1006/tpbi.1994.1032

    Article  Google Scholar 

  33. Durrett R, Levin SA (1994b) Stochastic spatial models: a user’s guide to ecological applications. Philos Trans R Soc B Biol Sci 343:329–350. https://doi.org/10.1098/rstb.1994.0028

    Article  Google Scholar 

  34. Eaton MJ, Hughes PT, Hines JE, Nichols JD (2014) Testing metapopulation concepts: effects of patch characteristics and neighborhood occupancy on the dynamics of an endangered lagomorph. Oikos 123:662–676. https://doi.org/10.1111/oik.01008

    Article  Google Scholar 

  35. Ellner SP, Fussmann G (2003) Effects of successional dynamics on metapopulation persistence. Ecology 84:882–889. https://doi.org/10.1890/0012-9658(2003)084[0882:EOSDOM]2.0.CO;2

    Article  Google Scholar 

  36. Estrada E, Bodin Ö (2008) Using network centrality measures to manage landscape connectivity. Ecol Appl 18:1810–1825. https://doi.org/10.1890/07-1419.1

    Article  PubMed  Google Scholar 

  37. Etienne RS (2002) A scrutiny of the Levins metapopulation model. Comments Theor Biol 7:257–281. https://doi.org/10.1080/08948550214052

    Article  Google Scholar 

  38. Etienne RS, Nagelkerke CJ (2002) Non-equilibria in small metapopulations: comparing the deterministic Levins model with its stochastic counterpart. J Theor Biol 219:463–478. https://doi.org/10.1006/jtbi.2002.3135

    Article  PubMed  Google Scholar 

  39. Fabritius H, Jokinen A, Cabeza M (2017) Metapopulation perspective to institutional fit: maintenance of dynamic habitat networks. Ecol Soc 22:30. https://doi.org/10.5751/ES-09203-220230

    Article  Google Scholar 

  40. Fobert EK, Treml EA, Swearer SE (2019) Dispersal and population connectivity are phenotype dependent in a marine metapopulation. Proc R Soc B Biol Sci 286:20191104. https://doi.org/10.1098/rspb.2019.1104

    Article  Google Scholar 

  41. Fortuna MA, Gómez-Rodríguez C, Bascompte J (2006) Spatial network structure and amphibian persistence in stochastic environments. Proc R Soc B Biol Sci 273:1429–1434. https://doi.org/10.1098/rspb.2005.3448

    Article  Google Scholar 

  42. Frank K (2005) Metapopulation persistence in heterogeneous landscapes: lessons about the effect of stochasticity. Am Nat 165:374–388. https://doi.org/10.2307/3473413

    Article  PubMed  Google Scholar 

  43. Frisch D, Cottenie K, Badosa A, Green AJ (2012) Strong spatial influence on colonization rates in a pioneer zooplankton metacommunity. PLoS One 7:e40205. https://doi.org/10.1371/journal.pone.0040205

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  44. Gagnaire PA, Broquet T, Aurelle D, Viard F, Souissi A, Bonhomme F, Arnaud-Haond S, Bierne N (2015) Using neutral, selected, and hitchhiker loci to assess connectivity of marine populations in the genomic era. Evol Appl 8:769–786. https://doi.org/10.1111/eva.12288

    Article  PubMed  PubMed Central  Google Scholar 

  45. Geismar J, Haase P, Nowak C, Sauer J, Pauls SU (2015) Local population genetic structure of the montane caddisfly Drusus discolor is driven by overland dispersal and spatial scaling. Freshw Biol 60:209–221. https://doi.org/10.1111/fwb.12489

    Article  Google Scholar 

  46. Gibert JP, Yeakel JD (2019) Laplacian matrices and Turing bifurcations: revisiting Levin 1974 and the consequences of spatial structure and movement for ecological dynamics. Theor Ecol 12:265–281. https://doi.org/10.1007/s12080-018-0403-2

    Article  Google Scholar 

  47. Gilarranz LJ, Bascompte J (2012) Spatial network structure and metapopulation persistence. J Theor Biol 297:11–16. https://doi.org/10.1016/j.jtbi.2011.11.027

    Article  PubMed  Google Scholar 

  48. Gilarranz LJ, Hastings A, Bascompte J (2015) Inferring topology from dynamics in spatial networks. Theor Ecol 8:15–21. https://doi.org/10.1007/s12080-014-0231-y

    Article  Google Scholar 

  49. Green DG (1994) Connectivity and complexity in landscapes and ecosystems. Pacific Conserv Biol 1:194–200. https://doi.org/10.1071/PC940194

    Article  Google Scholar 

  50. Grilli J, Barabás G, Allesina S (2015) Metapopulation persistence in random fragmented landscapes. PLoS Comput Biol 11:e1004251. https://doi.org/10.1371/journal.pcbi.1004251

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  51. Grimm V, Wissel C (2004) The intrinsic mean time to extinction: a unifying approach to analysing persistence and viability of populations. Oikos 105:501–511. https://doi.org/10.1111/j.0030-1299.2004.12606.x

    Article  Google Scholar 

  52. Hairston NG Jr (1996) Zooplankton egg banks as biotic reservoirs in changing environments. Limnol Oceanogr 41:1087–1092. https://doi.org/10.4319/lo.1996.41.5.1087

    Article  Google Scholar 

  53. Hairston NG Jr, Kearns CM (2002) Temporal dispersal: ecological and evolutionary aspects of zooplankton egg banks and the role of sediment mixing. Integr Comp Biol 42:481–491. https://doi.org/10.1093/icb/42.3.481

    Article  PubMed  Google Scholar 

  54. Hamman EA, McKinley SA, Stier AC, Osenberg CW (2018) Landscape configuration drives persistent spatial patterns of occupant distributions. Theor Ecol 11:111–127. https://doi.org/10.1007/s12080-017-0352-1

    Article  Google Scholar 

  55. Hanski I (1994) A practical model of metapopulation dynamics. J Anim Ecol 63:151–162. https://doi.org/10.2307/5591

    Article  Google Scholar 

  56. Hanski I, Ovaskainen O (2000) The metapopulation capacity of a fragmented landscape. Nature 404:755–758. https://doi.org/10.1038/35008063

    CAS  Article  PubMed  Google Scholar 

  57. Hanski I, Moilanen A, Gyllenberg M (1996) Minimum viable metapopulation size. Am Nat 147:527–541. https://doi.org/10.1086/285864

    Article  Google Scholar 

  58. Hansson L (1991) Dispersal and connectivity in metapopulations. Biol J Linn Soc 42:83–103. https://doi.org/10.1111/j.1095-8312.1991.tb00553.x

    Article  Google Scholar 

  59. Harrison S (1991) Local extinction in a metapopulation context: an empirical evaluation. Biol J Linn Soc 42:73–88. https://doi.org/10.1111/j.1095-8312.1991.tb00552.x

    Article  Google Scholar 

  60. Havel JE, Shurin JB (2004) Mechanisms, effects, and scales of dispersal in freshwater zooplankton. Limnol Oceanogr 49:1229–1238. https://doi.org/10.4319/lo.2004.49.4_part_2.1229

    Article  Google Scholar 

  61. Havel JE, Shurin JB, Jones JR (2012) Estimating dispersal from patterns of spread: spatial and local control of lake invasions. Ecology 83:3306–3318. https://doi.org/10.1890/0012-9658(2002)083[3306:EDFPOS]2.0.CO;2

    Article  Google Scholar 

  62. Hess GR (1996) Linking extinction to connectivity and habitat destruction in metapopulation models. Am Nat 148:226–236. https://doi.org/10.1086/285922

    Article  Google Scholar 

  63. Hill JK, Thomas CD, Lewis OT (1996) Effects of habitat patch size and isolation on dispersal by Hesperia comma butterflies: implications for metapopulation structure. J Anim Ecol 65:725–735. https://doi.org/10.2307/5671

    Article  Google Scholar 

  64. Holmes CJ, Figary S, Schulz KL, Cáceres CE (2016a) Effects of diversity on community assembly in newly formed pond communities. Ecosphere 7:e01377. https://doi.org/10.1002/ecs2.1377

    Article  Google Scholar 

  65. Holmes CJ, Pantel JH, Schulz KL, Cáceres CE (2016b) Initial genetic diversity enhances population establishment and alters genetic structuring of a newly established Daphnia metapopulation. Mol Ecol 25:3299–3308. https://doi.org/10.1111/mec.13672

    Article  PubMed  Google Scholar 

  66. Howell PE, Muths E, Hossack BR, Sigafus BH, Chandler RB (2018) Increasing connectivity between metapopulation ecology and landscape ecology. Ecology 99:1119–1128. https://doi.org/10.1002/ecy.2189

    Article  PubMed  Google Scholar 

  67. Jacob S, Chaine AS, Huet M, Clobert J, Legrand D (2019) Variability in dispersal syndromes is a key driver of metapopulation dynamics in experimental microcosms. Am Nat 194:613–626. https://doi.org/10.1086/705410

    Article  PubMed  Google Scholar 

  68. Keeling MJ (2002) Using individual-based simulations to test the Levins metapopulation paradigm. J Anim Ecol 71:270–279. https://doi.org/10.1046/j.1365-2656.2002.00594.x

    Article  Google Scholar 

  69. Keymer JE, Marquet PA, Johnson AR (1998) Pattern formation in a patch occupancy metapopulation model: a cellular automata approach. J Theor Biol 194:79–90. https://doi.org/10.1006/jtbi.1998.0745

    CAS  Article  PubMed  Google Scholar 

  70. Keymer JE, Marquet PA, Velasco-herna JX et al (2000) Extinction thresholds and metapopulation persistence in dynamic landscapes. Am Nat 156:478–494. https://doi.org/10.1086/303407

    Article  PubMed  Google Scholar 

  71. Kritzer JP, Sale PF (2004) Metapopulation ecology in the sea: from Levins’ model to marine ecology and fisheries science. Fish Fish 5:1–10. https://doi.org/10.1111/j.1467-2979.2004.00131.x

    Article  Google Scholar 

  72. Laan E, Fox JW (2020) An experimental test of the effects of dispersal and the paradox of enrichment on metapopulation persistence. Oikos 129:49–58. https://doi.org/10.1111/oik.06552

    Article  Google Scholar 

  73. Lafferty KD, Swift CC, Ambrose RF (1999) Extirpation and recolonization in a metapopulation of an endangered fish, the tidewater goby. Conserv Biol 13:1447–1453. https://doi.org/10.1046/j.1523-1739.1999.98016.x

    Article  Google Scholar 

  74. Levins R (1969) Some demographic and genetic consequences of environmental heterogeneity for biological control. Bull Entomol Soc Am 15:237–240. https://doi.org/10.1093/besa/15.3.237

    Article  Google Scholar 

  75. Ma C, Shen Y, Bearup D, Fagan WF, Liao J (2020) Spatial variation in branch size promotes metapopulation persistence in dendritic river networks. Freshw Biol 65:426–434. https://doi.org/10.1111/fwb.13435

    Article  Google Scholar 

  76. Minor ES, Urban DL (2007) Graph theory as a proxy for spatially explicit population models in conservation planning. Ecol Appl 17:1771–1782. https://doi.org/10.1890/06-1073.1

    Article  PubMed  Google Scholar 

  77. Moilanen A, Hanski I (1998) Metapopulation dynamics: effects of habitat quality and landscape structure. Ecology 79:2503–2515. https://doi.org/10.1890/0012-9658(1998)079[2503:MDEOHQ]2.0.CO;2

    Article  Google Scholar 

  78. Molofsky J, Ferdy J-B (2005) Extinction dynamics in experimental metapopulations. Proc Natl Acad Sci 102:3726–3731. https://doi.org/10.1073/pnas.0404576102

    CAS  Article  PubMed  Google Scholar 

  79. Morozov A, Poggiale JC (2012) From spatially explicit ecological models to mean-field dynamics: the state of the art and perspectives. Ecol Complex 10:1–11. https://doi.org/10.1016/j.ecocom.2012.04.001

    Article  Google Scholar 

  80. Mortelliti A, Amori G, Boitani L (2010) The role of habitat quality in fragmented landscapes: a conceptual overview and prospectus for future research. Oecologia 163:535–547. https://doi.org/10.1007/s00442-010-1623-3

    Article  PubMed  Google Scholar 

  81. Nåsell I (2001) Extinction and quasi-stationarity in the Verhulst logistic model. J Theor Biol 211:11–27. https://doi.org/10.1006/jtbi.2001.2328

    Article  PubMed  Google Scholar 

  82. Nichols JD, Boulinier T, Hines JE, Pollock KH, Sauer JR (1998) Estimating rates of local species extinction, colonization, and turnover in animal communities. Ecol Appl 8:1213–1225. https://doi.org/10.1890/1051-0761(1998)008[1213:EROLSE]2.0.CO;2

    Article  Google Scholar 

  83. North A, Ovaskainen O (2007) Interactions between dispersal, competition, and landscape heterogeneity. Oikos 116:1106–1119. https://doi.org/10.1111/j.0030-1299.2007.15366.x

    Article  Google Scholar 

  84. Ovaskainen O (2002) The effective size of a metapopulation living in a heterogeneous patch network. Am Nat 160:612–628. https://doi.org/10.2307/3079113

    Article  PubMed  Google Scholar 

  85. Ovaskainen O, Meerson B (2010) Stochastic models of population extinction. Trends Ecol Evol 25:643–652. https://doi.org/10.1016/j.tree.2010.07.009

    Article  PubMed  Google Scholar 

  86. Pajunen VI, Pajunen I (2003) Long-term dynamics in rock pool Daphnia metapopulations. Ecography 26:731–738. https://doi.org/10.1111/j.0906-7590.2003.03542.x

    Article  Google Scholar 

  87. Pascual-Hortal L, Saura S (2006) Comparison and development of new graph-based landscape connectivity indices: towards the priorization of habitat patches and corridors for conservation. Landsc Ecol 21:959–967. https://doi.org/10.1007/s10980-006-0013-z

    Article  Google Scholar 

  88. Pascual-Hortal L, Saura S (2008) Integrating landscape connectivity in broad-scale forest planning through a new graph-based habitat availability methodology: application to Capercaillie (Tetrao urogallus) in Catalonia (NE Spain). Eur J For Res 127:23–31. https://doi.org/10.1007/s10342-006-0165-z

    Article  Google Scholar 

  89. Planes S, Jones GP, Thorrold SR (2009) Larval dispersal connects fish populations in a network of marine protected areas. Proc Natl Acad Sci 106:5693–5697. https://doi.org/10.1073/pnas.0808007106

    Article  PubMed  Google Scholar 

  90. Pressey RL, Cabeza M, Watts ME, Cowling RM, Wilson KA (2007) Conservation planning in a changing world. Trends Ecol Evol 22:583–592. https://doi.org/10.1016/j.tree.2007.10.001

    Article  PubMed  PubMed Central  Google Scholar 

  91. Prugh LR, Hodges KE, Sinclair ARE, Brashares JS (2008) Effect of habitat area and isolation on fragmented animal populations. Proc Natl Acad Sci 105:20770–20775. https://doi.org/10.1073/pnas.0806080105

    Article  Google Scholar 

  92. Reigada C, Schreiber SJ, Altermatt F, Holyoak M (2015) Metapopulation dynamics on ephemeral patches. Am Nat 185:183–195. https://doi.org/10.1086/679502

    Article  PubMed  Google Scholar 

  93. Roy M, Harding K, Holt RD (2008) Generalizing Levins metapopulation model in explicit space: models of intermediate complexity. J Theor Biol 255:152–161. https://doi.org/10.1016/j.jtbi.2008.07.022

    Article  PubMed  Google Scholar 

  94. Sæther BE, Engen S, Lande R (1999) Finite metapopulation models with density-dependent migration and stochastic local dynamics. Proc R Soc B Biol Sci 266:113–118. https://doi.org/10.1098/rspb.1999.0610

    Article  Google Scholar 

  95. Schooley RL, Branch LC (2009) Enhancing the area-isolation paradigm: habitat heterogeneity and metapopulation dynamics of a rare wetland mammal. Ecol Appl 19:1708–1722. https://doi.org/10.1890/08-2169.1

    Article  PubMed  Google Scholar 

  96. Schultz CB, Crone EE (2005) Patch size and connectivity thresholds for butterfly habitat restoration. Conserv Biol 19:887–896. https://doi.org/10.1111/j.1523-1739.2005.00462.x

    Article  Google Scholar 

  97. Shurin JB (2000) Dispersal limitation, invasion resistance, and the structure of pond zooplankton communities. Ecology 81:3074–3086. https://doi.org/10.1890/0012-9658(2000)081[3074:DLIRAT]2.0.CO;2

    Article  Google Scholar 

  98. Smith MA, Green DM (2005) Dispersal and the metapopulation paradigm in amphibian ecology and conservation: are all amphibian populations metapopulations? Ecography 28:110–128. https://doi.org/10.1111/j.0906-7590.2005.04042.x

    Article  Google Scholar 

  99. Thomas JA, Bourn NAD, Clarke RT, Stewart KE, Simcox DJ, Pearman GS, Curtis R, Goodger B (2001) The quality and isolation of habitat patches both determine where butterflies persist in fragmented landscapes. Proc R Soc B Biol Sci 268:1791–1796. https://doi.org/10.1098/rspb.2001.1693

    CAS  Article  Google Scholar 

  100. Thompson CJ, Shtilerman E, Stone L (2016) A discrete Markov metapopulation model for persistence and extinction of species. J Theor Biol 404:391–397. https://doi.org/10.1016/j.jtbi.2016.06.010

    Article  PubMed  Google Scholar 

  101. Thompson PL, Rayfield B, Gonzalez A (2017) Loss of habitat and connectivity erodes species diversity, ecosystem functioning, and stability in metacommunity networks. Ecography 40:98–108. https://doi.org/10.1111/ecog.02558

    Article  Google Scholar 

  102. To TL, Maheshri N (2010) Noise can induce bimodality in positive transcriptional feedback loops without bistability. Science 327(80):1142–1145. https://doi.org/10.1126/science.1178962

    CAS  Article  PubMed  Google Scholar 

  103. Tromeur E, Rudolf L, Gross T (2016) Impact of dispersal on the stability of metapopulations. J Theor Biol 392:1–11. https://doi.org/10.1016/j.jtbi.2015.11.029

    Article  PubMed  Google Scholar 

  104. Tyre AJ, Possingham HP, Lindenmayer DB (2001) Inferring process from pattern: can territory occupancy provide information about life history parameters? Ecol Appl 11:1722–1737. https://doi.org/10.1890/1051-0761(2001)011[1722:IPFPCT]2.0.CO;2

    Article  Google Scholar 

  105. Urban D, Keitt T (2001) Landscape connectivity: a graph-theoretic perspective. Ecology 82:1205–1218. https://doi.org/10.1890/0012-9658(2001)082[1205:LCAGTP]2.0.CO;2

    Article  Google Scholar 

  106. Van Langevelde F, Wynhoff I (2009) What limits the spread of two congeneric butterfly species after their reintroduction: quality or spatial arrangement of habitat? Anim Conserv 12:540–548. https://doi.org/10.1111/j.1469-1795.2009.00281.x

    Article  Google Scholar 

  107. Vanschoenwinkel B, Hulsmans A, De Roeck E et al (2009) Community structure in temporary freshwater pools: disentangling the effects of habitat size and hydroregime. Freshw Biol 54:1487–1500. https://doi.org/10.1111/j.1365-2427.2009.02198.x

    Article  Google Scholar 

  108. Vuilleumier S, Wilcox C, Cairns BJ, Possingham HP (2007) How patch configuration affects the impact of disturbances on metapopulation persistence. Theor Popul Biol 72:77–85. https://doi.org/10.1016/j.tpb.2006.11.001

    Article  PubMed  Google Scholar 

  109. Wang S, Altermatt F (2019) Metapopulations revisited: the area-dependence of dispersal matters. Ecology 100:e02792. https://doi.org/10.1002/ecy.2792

    Article  PubMed  Google Scholar 

  110. Wang S, Haegeman B, Loreau M (2015) Dispersal and metapopulation stability. PeerJ 3:e1295. https://doi.org/10.7717/peerj.1295

    Article  PubMed  PubMed Central  Google Scholar 

  111. Windmiller B, Calhoun AJK (2007) Conserving vernal pool wildlife in urbanizing landscapes. In: Calhoun AJK, DeMaynadier PG (eds) Science and conservation of vernal pools in northeastern North America. CRC, Boca Raton, pp 233–251

    Google Scholar 

  112. With KA, Crist TO (1995) Critical thresholds in species’ responses to landscape structure. Ecology 76:2446–2459. https://doi.org/10.2307/2265819

    Article  Google Scholar 

  113. Yackulic CB, Nichols JD, Reid J, Der R (2015) To predict the niche, model colonization and extinction. Ecology 96:16–23. https://doi.org/10.1890/14-1361.1

    Article  Google Scholar 

  114. Youker-Smith TE, Boersch-Supan PH, Whipps CM, Ryan SJ (2018) Environmental drivers of ranavirus in free-living amphibians in constructed ponds. Ecohealth 15:608–618. https://doi.org/10.1007/s10393-018-1350-5

    Article  PubMed  PubMed Central  Google Scholar 

  115. Zamborain-Mason J, Russ GR, Abesamis RA, Bucol AA, Connolly SR (2017) Network theory and metapopulation persistence: incorporating node self-connections. Ecol Lett 20:815–831. https://doi.org/10.1111/ele.12784

    Article  PubMed  Google Scholar 

  116. Zytynska SE (2019) Spatial synchrony of population dynamics: empirical testing of mechanisms. J Anim Ecol 88:1114–1117. https://doi.org/10.1111/1365-2656.13045

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This manuscript is dedicated to the memory of Kevin G. Chapman (1989–2020)—a wonderful friend, colleague, and field ecologist. We thank Jessica R. Holmes, James P. O’Dwyer, Brian F. Allan, Ephantus J. Muturi, and Andrew V. Suarez who kindly provided comments on this manuscript.

Funding

This research was supported by the United States National Science Foundation [DEB-0947314, DEB-0947245, DEB-1120804, DUE-1129198, and DEB-1354407] and the University of Illinois Research Board [RB17060] and by grants from the University of Illinois at Urbana-Champaign School of Integrative Biology and Department of Evolution, Ecology and Behavior.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Christopher J. Holmes.

Appendix

Appendix

Fig. 8
figure8

The effect of regional colonization is shown for the stochastic simulations (black line) ± standard deviation and the ODE (blue line). Percent occupancy increases with regional colonization for our network of N = 38 ponds

Fig. 9
figure9

Examples of colonization kernels used in simulations to explore the effect of colonization probabilities on the simulation outcomes

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Holmes, C.J., Rapti, Z., Pantel, J.H. et al. Patch centrality affects metapopulation dynamics in small freshwater ponds. Theor Ecol 13, 435–448 (2020). https://doi.org/10.1007/s12080-020-00463-w

Download citation

Keywords

  • Levins model
  • Spatially explicit population model
  • Habitat patch conservation
  • Patch dynamics
  • Population ecology
  • Colonization–extinction dynamics