Advertisement

What is the shape of the fundamental Grinnellian niche?

  • Jorge SoberónEmail author
  • A. Townsend Peterson
ORIGINAL PAPER

Abstract

Since it was defined by Hutchinson, in 1957, the fundamental niche has been assumed, implicitly or explicitly, to have some convex shape. This assumption requires some critical analysis. In this work, we examine the special case of Grinnellian niches (those composed by sets of points of non-interactive variables in multidimensional spaces). We show that annual species in seasonal environments are likely to have very non-convex shapes, and be composed not of sets of points, but of sets of trajectories. We also examine under what circumstances trajectories may be approximated using sets of points. It appears to be the case that the breadth of requirements at each stage in the life history is a key parameter. We conclude by comparing the situation with perennial species.

Keywords

Fundamental niche Existing niche Realized niche Life history Seasonal environments 

Notes

Acknowledgements

The authors are grateful to the members of the University of Kansas Ecological Niche Modeling seminar, for many fruitful discussions, and to Oliver Broennimann and Robert Holt for helpful comments on the manuscript. We are also grateful to our colleague, Blitzi Soberon, and to our wives Tita (JS) and Rosi (TP), for the patience they show to us when we work at home, or during holidays and weekends.

Funding information

JS received partial support from the ABI NSF grant no. 1458640.

References

  1. Angilletta M (2009) Thermal adaptation. A theoretical and empirical synthesis. Oxford University Press, OxfordCrossRefGoogle Scholar
  2. Araújo MB, Guisan A (2006) Five (or so) challenges for species distribution modelling. Glob Ecol Biogeogr 33:1677–1688CrossRefGoogle Scholar
  3. Austin MP (1985) Continuum concept, ordination methods, and niche theory. Annu Rev Ecol Syst 16:39–61CrossRefGoogle Scholar
  4. Austin M (1999) A silent clash of paradigms: some inconsistencies in community ecology. Oikos 86:170–178CrossRefGoogle Scholar
  5. Bennett, J. M., P. Calosi, S. Clusella-Trullas, B. Martínez, J. Sunday, A. C. Algar, . . . I. Kühn. 2018. GlobTherm, a global database on thermal tolerances for aquatic and terrestrial organisms. Scientific Data 5:180022CrossRefPubMedPubMedCentralGoogle Scholar
  6. Birch LC (1953) Experimental background to the study of the distribution and abundance of insects: I. the influence of temperature, moisture and food on the innate capacity for increase of three grain beetles. Ecology 34:698–711CrossRefGoogle Scholar
  7. Blonder B, Lamanna C, Violle C, Enquist BJ (2014) The n-dimensional hypervolume. Glob Ecol Biogeogr 23:595–609CrossRefGoogle Scholar
  8. Booth TH, Nix HA, Busby JR, Hutchinson MF (2014) BIOCLIM: the first species distribution modelling package, its early applications and relevance to most current MAXENT studies. Divers Distrib 20:1–9CrossRefGoogle Scholar
  9. Brewer A, Gaston KJ (2003) The geographical range structure of the holly leaf-miner. II. Demographic rates. J Anim Ecol 72:82–93CrossRefGoogle Scholar
  10. Brewer M, O’Hara R, Anderson B, Ohlemüller R (2016) Plateau: a new method for ecologically plausible climate envelopes for species distribution modelling. Methods Ecol Evol 7:1489–1502CrossRefGoogle Scholar
  11. Broennimann O, Treier UA, Muller-Schaerer H, Thuiller W, Peterson AT, Guisan A (2007) Evidence of climatic niche shift during biological invasion. Ecol Lett 10:701–709CrossRefPubMedGoogle Scholar
  12. Broennimann, O., M. C. Fitzpatrick, P. B. Pearman, B. Petitpierre, L. Pellissier, N. G. Yoccoz, . . . A. Guisan. 2012. Measuring ecological niche overlap from occurrence and spatial environmental data. Glob Ecol Biogeogr 21:481–497CrossRefGoogle Scholar
  13. Brown JH (1995) Macroecology. University of Chicago Press, ChicagoGoogle Scholar
  14. Buckley LB, Urban MC, Angilletta MJ, Crozier LG, Rissler LJ, Sears MW (2010) Can mechanism inform species’ distribution models? Ecol Lett 13:1041–1054CrossRefPubMedGoogle Scholar
  15. Carpenter G, Gillison AN, Winter J (1993) DOMAIN: a flexible modeling procedure for mapping potential distributions of animals and plants. Biodivers Conserv 2:667–680CrossRefGoogle Scholar
  16. Caswell H (2001) Matrix population models. Sinauer Associates, Inc, SunderlandGoogle Scholar
  17. Chapman A (2005a) Principles and methods of data cleaning-primary species and species-occurrence data. Global Biodiversity Information Facility, CopenhagenGoogle Scholar
  18. Chapman AD (2005b) Uses of primary species-occurrence data. Global Biodiversity Information Facility, CopenhagenGoogle Scholar
  19. Chase JM, Leibold M (2003) Ecological niches: linking classical and contemporary approaches. University of Chicago Press, Chicago and LondonCrossRefGoogle Scholar
  20. Cohen JE (1978) Food webs and niche space. Princeton University Press, PrincetonGoogle Scholar
  21. Crozier L, Dwyer G (2006) Combining population-dynamic and ecophysiological models to predict climate-induced insect range shifts. Am Nat 167:853–866PubMedGoogle Scholar
  22. Dallas T, Decker RR, Hastings A (2017) Species are not most abundant in the centre of their geographic range or climatic niche. Ecol Lett 20:1526–1533CrossRefPubMedGoogle Scholar
  23. Daly C, Gibson WP, Taylor GH, Johnson GL, Pasteris P (2002) A knowledge-based approach to the statistical mapping of climate. Clim Res 22:99–113CrossRefGoogle Scholar
  24. Drake JM (2015) Range bagging: a new method for ecological niche modelling from presence-only data. Interface 12:20150086PubMedGoogle Scholar
  25. Eckhart V, Geber M, Morris W, Fabio E, Tiffin P, Moeller D (2011) The geography of demography: long-term demographic studies and species distribution models reveal a species border limited by adaptation. Am Nat 178:S26–S43CrossRefPubMedGoogle Scholar
  26. Elith J, Graham C (2009) Do they? How do they? WHY do they differ? On finding reasons for differing performances of species distribution models. Ecography 32:66–77CrossRefGoogle Scholar
  27. Elith, J., C. Graham, R. Anderson, M. Dudik, S. Ferrier, A. Guisan, . . . N. Zimmermann. 2006. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29:129–151CrossRefGoogle Scholar
  28. Farber O, Kadmon R (2003) Assessment of alternative approaches for bioclimatic modeling with special emphasis on the Mahalanobis distance. Ecol Model 160:115–130CrossRefGoogle Scholar
  29. Franklin J (2009) Mapping species distributions: spatial inference and prediction. Cambridge University Press, CambridgeGoogle Scholar
  30. Godsoe W (2009) I can’t define the niche but I know it when I see it: a formal link between statistical theory and the ecological niche. Oikos 119:53–60CrossRefGoogle Scholar
  31. Graham C, Ferrier S, Huettman F, Moritz C, Peterson AT (2004) New developments in museum-based informatics and applications in biodiversity analysis. Trends Ecol Evol 19:497–503CrossRefPubMedGoogle Scholar
  32. Grubb PJ (1977) The maintenance of species-richness in plant communities: the importance of the regeneration niche. Biol Rev 52:107–145CrossRefGoogle Scholar
  33. Guisan, A., R. Tingley, J. B. Baumgartner, I. Naujokaitis-Lewis, P. R. Sutcliffe, A. I. T. Tulloch, . . . Y. M. Buckley. 2013. Predicting species distributions for conservation decisions. Ecol Lett 16:1424–1435CrossRefPubMedPubMedCentralGoogle Scholar
  34. Hijmans RJ, Cameron S, Parra J, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978CrossRefGoogle Scholar
  35. Hirzel AH, Hausser J, Chessel D, Perrin N (2002) Ecological-niche factor analysis: how to compute habitat-suitability maps without absence data? Ecology 83:2027–2036CrossRefGoogle Scholar
  36. Hitchcock L (1955) Studies on the parasitic stages of the cattle tick Boophilus Microplus (Acarina: Ixodidae). Aust J Zoology 3:145–155CrossRefGoogle Scholar
  37. Holt RD (2009) Bringing the Hutchinsonian niche into the 21st century: ecological and evolutionary perspectives. Proc Natl Acad Sciences USA 106:19659–19665CrossRefGoogle Scholar
  38. Holt RD, Gomulkiewicz R (1997) The evolution of species niches: a populations dynamic perspective. In: Othmer HG, Adler FR, Lewis MA, Dillon J (eds) Case studies in mathematical modelling: ecology. Physiology and Cell Biology. Prentice-Hall, Englewood Cliffs, NJ, pp 25–50Google Scholar
  39. Hooper H, Connon R, Callaghan A, Fryer G, Yarwood-Buchanan S, Biggs J et al (2008) The ecological niche of Daphnia magna characterized using population growth rate. Ecology 89:1015–1022CrossRefGoogle Scholar
  40. Hutchinson GE (1957) Concluding remarks. Cold Spring Harb Symp Quant Biol 22:415–427CrossRefGoogle Scholar
  41. Hutchinson GE (1978) An introduction to population ecology. Yale University Press, New HavenGoogle Scholar
  42. Jackson ST, Overpeck JT (2000) Responses of plant populations and communities to environmental changes of the late Quaternary. Paleobiology 26(Supplement):194–220CrossRefGoogle Scholar
  43. Janzen D (1967) Why mountain passes are higher in the tropics. Am Nat 101:233–249CrossRefGoogle Scholar
  44. Jiménez-Valverde A, Lobo JM, Hortal J (2008) Not as good as they seem: the importance of concept in species distribution modelling. Divers Distrib 14:885–890CrossRefGoogle Scholar
  45. Joppa, L. N., G. McInerny, R. Harper, L. Salido, K. Takeda, K. O’Hara, . . . S. Emmott. 2013. Troubling trends in scientific software use. Science 340:814–815CrossRefPubMedGoogle Scholar
  46. Kearney M (2006) Habitat, environment and niche: what are we modelling? Oikos 115:186–191CrossRefGoogle Scholar
  47. Lande R, Engen S, Saether B-E (2003) Stochastic population dynamics in ecology and conservation. Oxford University Press, OxfordCrossRefGoogle Scholar
  48. Leverich WJ, Levin DA (1979) Age-specific survivorship and reproduction in Phlox drummondii. Am Nat 113:881–903CrossRefGoogle Scholar
  49. Lira-Noriega A, Manthey JD (2014) Relationship of genetic diversity and niche centrality: a survey and analysis. Evolution 68:1082–1093CrossRefGoogle Scholar
  50. Maguire B (1973) Niche response structure and the analytical potentials of its relationship to the habitat. Am Nat 107:213–246CrossRefGoogle Scholar
  51. Martínez-Meyer E, Díaz-Porras D, Peterson AT, Yáñez-Arenas C (2013) Ecological niche structure and rangewide abundance patterns of species. Biol Lett 9:20120637CrossRefPubMedPubMedCentralGoogle Scholar
  52. Materna AC, Friedman J, Bauer C, David C, Chen S, Huang IB, Gillens A, Clarke SA, Polz MF, Alm EJ (2012) Shape and evolution of the fundamental niche in marine vibrio. The ISME journal 6(12):2168–2177CrossRefPubMedPubMedCentralGoogle Scholar
  53. McInerny GJ, Etienne RS (2012) Ditch the niche – is the niche a useful concept in ecology or species distribution modelling? J Biogeogr 39:2096–2102CrossRefGoogle Scholar
  54. Merow C, Smith MJ, Silander J (2013) A practical guide to MaxEnt for modeling species’ distributions: what it does, and why inputs and settings matter. Ecography 36:1058–1069CrossRefGoogle Scholar
  55. Merow C, Latimer AM, Wilson AM, McMahon SM, Rebelo AG, Silander JA (2014) On using integral projection models to generate demographically driven predictions of species’ distributions: development and validation using sparse data. Ecography 37:1167–1183CrossRefGoogle Scholar
  56. Nix, H. A. 1986. A biogeographic analysis of Australian elapid snakes.in R. Longmore, editor. Atlas of Elapid Snakes of Australia. Australian Government Publishing Service, CanberraGoogle Scholar
  57. Osorio-Olvera L, Falconi M, Soberón J (2016) Sobre la relación entre idoneidad del hábitat y la abundancia poblacional bajo diferentes escenarios de dispersión. Rev Mex Biodiversidad 87:1080–1088CrossRefGoogle Scholar
  58. Owens, H. L., L. P. Campbell, L. L. Dornak, E. E. Saupe, N. Barve, J. Soberón, . . . A. T. Peterson. 2013. Constraints on interpretation of ecological niche models by limited environmental ranges on calibration areas. Ecol Model 263:10–18CrossRefGoogle Scholar
  59. Peterson AT (2003) Predicting the geography of species’ invasions via ecological niche modeling. Q Rev Biol 78:419–433CrossRefPubMedGoogle Scholar
  60. Peterson AT (2011) Ecological niche conservatism: a time-structured review of evidence. J Biogeogr 38:817–827CrossRefGoogle Scholar
  61. Peterson AT, Soberon J, Sanchez-Cordero V (1999) Conservatism of ecological niches in evolutionary time. Science 285:1265–1267CrossRefGoogle Scholar
  62. Peterson AT, Martínez-Campos C, Nakazawa Y, Martínez-Meyer E (2005) Time-specific ecological niche modeling predicts spatial dynamics of vector insects and human dengue cases. Trans R Soc Trop Med Hyg 99:647–655CrossRefPubMedGoogle Scholar
  63. Peterson AT, Soberón J, Pearson RG, Anderson R, Martínez-Meyer E, Nakamura M, Araújo M (2011) Ecological niches and geographic distributions. Princeton University Press, PrincetonCrossRefGoogle Scholar
  64. Peterson AT, Papeş M, Soberón J (2015) Mechanistic and correlative models of ecological niches. European Journal of Ecology 1:28–38CrossRefGoogle Scholar
  65. Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190:231–259CrossRefGoogle Scholar
  66. Pironon S, Villellas J, Thuiller W, Eckhart VM, Geber MA, Moeller DA, García MB (2017) The ‘Hutchinsonian niche’as an assemblage of demographic niches: implications for species geographic ranges. Ecography 41:1103–1113CrossRefGoogle Scholar
  67. Pulliam R (2000) On the relationship between niche and distribution. Ecol Lett 3:349–361CrossRefGoogle Scholar
  68. Raes N (2012) Partial versus full species distribution models. Natureza & Conservacao 10:127–138CrossRefGoogle Scholar
  69. Sheth SN, Angert AL (2014) The evolution of environmental tolerance and range size: a comparison of geographically restricted and widespread Mimulus. Evolution 68:2917–2931CrossRefPubMedGoogle Scholar
  70. Soberón J, Arroyo-Peña B (2017) Are fundamental niches larger than the realized? Testing a 50-year-old prediction by Hutchinson. PLoS One 12:e0175138CrossRefPubMedPubMedCentralGoogle Scholar
  71. Soberón J, Peterson AT (2011) Ecological shifts and environmental space anisotropy: a cautionary note. Rev Mex Biodiversidad 82:1348–1355Google Scholar
  72. Soberón J, Llorente J, Benítez H (1996) An international view of national biological surveys. Ann Mo Bot Gard 83:562–573CrossRefGoogle Scholar
  73. Stearns SC (1989) Trade-offs in life-history evolution. Funct Ecol 3:259–268CrossRefGoogle Scholar
  74. Sunday JM, Bates AE, Dulvy NK (2011) Global analysis of thermal tolerance and latitude in ectotherms. Proc R Soc Lond B Biol Sci 278:1823–1830CrossRefGoogle Scholar
  75. Sutherst RW, Maywald GF (1985) A computerized system for matching climates in. Ecol Agric, Ecosyst Environ 13:281–299CrossRefGoogle Scholar
  76. Swanson HK, Lysy M, Power M, Stasko AD, Johnson JD, Reist JD (2015) A new probabilistic method for quantifying n-dimensional ecological niches and niche overlap. Ecology 96:318–324CrossRefPubMedGoogle Scholar
  77. Tuljarpurkar S, Caswell H (1997) Structured-population models in marine, terrestrial and freshwater systems. Chapman & Hall, New YorkCrossRefGoogle Scholar
  78. VanDerWal J, Shoo LP, Graham C, Williams SE (2009) Selecting pseudo-absence data for presence-only distribution modeling: how far should you stray from what you know? Ecol Model 220:589–594CrossRefGoogle Scholar
  79. Ward G, Hastie T, Barry S, Elith J, Leathwick JR (2009) Presence-only data and the EM algorithm. Biometrics 65:554–563CrossRefPubMedPubMedCentralGoogle Scholar
  80. Wermelinger B, Seifert M (1998) Analysis of the temperature dependent development of the spruce bark beetle Ips typographus (L)(Col., Scolytidae). J Appl Entomol 122:185–191CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Biodiversity InstituteUniversity of KansasLawrenceUSA

Personalised recommendations