Advertisement

Spatial scaling of species richness–productivity relationships for local communities: analytical results from a neutral model

  • Tak Fung
  • Sa Xiao
  • Ryan A. ChisholmEmail author
ORIGINAL PAPER
  • 83 Downloads

Abstract

The relationship between species richness and productivity changes with spatial scale, but the way in which it changes and the underlying mechanisms remain unclear. We address this critical knowledge gap using a new mechanistic model of the spatial scaling of species richness–productivity (SP) relationships for a local community. Our model is neutral and hence assumes that species dynamics are driven by dispersal limitation and demographic stochasticity. We showed analytically that SP relationships predicted by our model are typically unimodal. Consistent with previous simulation-based studies, the positive phase of our unimodal SP relationship was driven by a sampling effect (“more-individuals effect”) whereas the negative phase was driven by relatively more propagules being of local as opposed to external origin (“dilution effect”). Our main novel finding related to the spatial scaling of the unimodal SP relationship: the peak shifted to the left with increasing spatial scale, such that the decreasing phase covered a greater range of productivity. This was driven by an increase in the strength of the dilution effect relative to the more-individuals effect, reflecting higher area/perimeter ratios at larger spatial scales. Our theoretical predictions are qualitatively consistent with the spatial scaling of SP relationships documented for trees in localized forest communities across the world.

Keywords

Biodiversity Neutral model Productivity Spatial grain Species richness 

Notes

Acknowledgements

We thank Matthew Luskin (Nanyang Technological University) and members of Chisholm Lab (National University of Singapore) for comments on the manuscript.

Funding information

This work was supported by a grant to RAC from the James S. McDonnell Foundation (#220020470) and grants to SX from the National Natural Science Foundation of China (#41830321, 31870412, 31470492, 31670435).

Supplementary material

12080_2019_431_MOESM1_ESM.pdf (9.5 mb)
ESM 1 (PDF 9.52 MB)

References

  1. Aarssen LW (2004) Interpreting co-variation in species richness and productivity in terrestrial vegetation: making sense of causations and correlations at multiple scales. Folia Geobot 39(4):385–403CrossRefGoogle Scholar
  2. Abrams PA (1988) Resource productivity–consumer species diversity: simple models of competition in spatially heterogeneous environments. Ecology 69(5):1418–1433CrossRefGoogle Scholar
  3. Abrams PA (1995) Monotonic or unimodal diversity–productivity gradients: what does competition theory predict? Ecology 76(7):2019–2027CrossRefGoogle Scholar
  4. Adler PB, Seabloom EW, Borer ET, Hillebrand H, Hautier Y, Hector A, Harpole WS, O'Halloran LR, Grace JB, Anderson TM, Bakker JD, Biederman LA, Brown CS, Buckley YM, Calabrese LB, Chu CJ, Cleland EE, Collins SL, Cottingham KL, Crawley MJ, Damschen EI, Davies KF, DeCrappeo NM, Fay PA, Firn J, Frater P, Gasarch EI, Gruner DS, Hagenah N, Hille Ris Lambers J, Humphries H, Jin VL, Kay AD, Kirkman KP, Klein JA, Knops JMH, la Pierre KJ, Lambrinos JG, Li W, MacDougall AS, McCulley RL, Melbourne BA, Mitchell CE, Moore JL, Morgan JW, Mortensen B, Orrock JL, Prober SM, Pyke DA, Risch AC, Schuetz M, Smith MD, Stevens CJ, Sullivan LL, Wang G, Wragg PD, Wright JP, Yang LH (2011) Productivity is a poor predictor of plant species richness. Science 333(6050):1750–1751CrossRefGoogle Scholar
  5. Allouche O, Kadmon R (2009a) Demographic analysis of Hubbell’s neutral theory of biodiversity. J Theor Biol 258(2):274–280CrossRefGoogle Scholar
  6. Allouche O, Kadmon R (2009b) A general framework for neutral models of community dynamics. Ecol Lett 12(12):1–10CrossRefGoogle Scholar
  7. Axmanová I, Chytrý M, Danihelka J, Lustyk P, Kočí M, Kubešová S, Horsák M, Cherosov MM, Gogoleva PA (2013) Plant species richness–productivity relationships in a low-productive boreal region. Plant Ecol 214(2):207–219CrossRefGoogle Scholar
  8. Borda-de-Água L, Borges PAV, Hubbell SP, Pereira HM (2012) Spatial scaling of species abundance distributions. Ecography 35(6):549–556CrossRefGoogle Scholar
  9. Cardinale BJ, Hillebrand H, Harpole WS, Gross K, Ptacnik R (2009a) Separating the influence of resource ‘availability’ from resource ‘imbalance’ on productivity–diversity relationships. Ecol Lett 12(6):475–487CrossRefGoogle Scholar
  10. Cardinale BJ, Bennett DM, Nelson CE, Gross K (2009b) Does productivity drive diversity or vice versa? A test of the multivariate productivity–diversity hypothesis in streams. Ecology 90(5):1227–1241CrossRefGoogle Scholar
  11. Cavanaugh KC, Gosnell JS, Davis SL, Ahumada J, Boundja P, Clark DB, Mugerwa B, Jansen PA, O'Brien TG, Rovero F, Sheil D, Vasquez R, Andelman S (2014) Carbon storage in tropical forests correlates with taxonomic diversity and functional dominance on a global scale. Glob Ecol Biogeogr 23(5):563–573CrossRefGoogle Scholar
  12. Chapin FS (1980) The mineral nutrition of wild plants. Annu Rev Ecol Evol Syst 11:233–260CrossRefGoogle Scholar
  13. Chase JM, Leibold MA (2002) Spatial scale dictates the productivity–biodiversity relationship. Nature 416(6879):427–430CrossRefGoogle Scholar
  14. Chisholm RA, Lichstein JW (2009) Linking dispersal, immigration and scale in the neutral theory of biodiversity. Ecol Lett 12(12):1385–1393CrossRefGoogle Scholar
  15. Chisholm RA, Muller-Landau HC, Abdul Rahman K, Bebber DP, Bin Y, Bohlman SA, Bourg NA, Brinks J, Bunyavejchewin S, Butt N, Cao H, Cao M, Cárdenas D, Chang LW, Chiang JM, Chuyong G, Condit R, Dattaraja HS, Davies S, Duque A, Fletcher C, Gunatilleke N, Gunatilleke S, Hao Z, Harrison RD, Howe R, Hsieh CF, Hubbell SP, Itoh A, Kenfack D, Kiratiprayoon S, Larson AJ, Lian J, Lin D, Liu H, Lutz JA, Ma K, Malhi Y, McMahon S, McShea W, Meegaskumbura M, Mohd. Razman S, Morecroft MD, Nytch CJ, Oliveira A, Parker GG, Pulla S, Punchi-Manage R, Romero-Saltos H, Sang W, Schurman J, Su SH, Sukumar R, Sun IF, Suresh HS, Tan S, Thomas D, Thomas S, Thompson J, Valencia R, Wolf A, Yap S, Ye W, Yuan Z, Zimmerman JK (2013) Scale-dependent relationships between tree species richness and ecosystem function in forests. J Ecol 101(5):1214–1224CrossRefGoogle Scholar
  16. Chisholm RA, Lim F, Yeoh YS, Seah WW, Condit R, Rosindell J (2018) Species–area relationships and biodiversity loss in fragmented landscapes. Ecol Lett 21(6):804–813CrossRefGoogle Scholar
  17. Clark JS, Silman M, Kern R, Macklin E, HilleRisLambers J (1999) Seed dispersal near and far: patterns across temperate and tropical forests. Ecology 80(5):1475–1494CrossRefGoogle Scholar
  18. Connell JH (1978) Diversity in tropical rain forests and coral reefs. Science 199(4335):1302–1310CrossRefGoogle Scholar
  19. Fraser LH, Pither J, Jentsch A, Sternberg M, Zobel M, Askarizadeh D, Bartha S, Beierkuhnlein C, Bennett JA, Bittel A, Boldgiv B, Boldrini II, Bork E, Brown L, Cabido M, Cahill J, Carlyle CN, Campetella G, Chelli S, Cohen O, Csergo AM, Diaz S, Enrico L, Ensing D, Fidelis A, Fridley JD, Foster B, Garris H, Goheen JR, Henry HAL, Hohn M, Jouri MH, Klironomos J, Koorem K, Lawrence-Lodge R, Long R, Manning P, Mitchell R, Moora M, Muller SC, Nabinger C, Naseri K, Overbeck GE, Palmer TM, Parsons S, Pesek M, Pillar VD, Pringle RM, Roccaforte K, Schmidt A, Shang Z, Stahlmann R, Stotz GC, Sugiyama SI, Szentes S, Thompson D, Tungalag R, Undrakhbold S, van Rooyen M, Wellstein C, Wilson JB, Zupo T (2015) Worldwide evidence of a unimodal relationship between productivity and plant species richness. Science 349(6245):302–305CrossRefGoogle Scholar
  20. Gillman LN, Wright SD (2006) The influence of productivity on the species richness of plants: a critical assessment. Ecology 87(5):1234–1243CrossRefGoogle Scholar
  21. Grace JB, Anderson TM, Seabloom EW, Borer ET, Adler PB, Harpole WS, Hautier Y, Hillebrand H, Lind EM, Pärtel M, Bakker JD, Buckley YM, Crawley MJ, Damschen EI, Davies KF, Fay PA, Firn J, Gruner DS, Hector A, Knops JMH, MacDougall AS, Melbourne BA, Morgan JW, Orrock JL, Prober SM, Smith MD (2016) Integrative modelling reveals mechanisms linking productivity and plant species richness. Nature 529(7586):390–393CrossRefGoogle Scholar
  22. Grime JP (1973) Competitive exclusion in herbaceous vegetation. Nature 242(5396):344–347CrossRefGoogle Scholar
  23. Grime JP (1977) Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. Am Nat 111(982):1169–1194CrossRefGoogle Scholar
  24. Grime JP (1979) Plant strategies and vegetation processes. John Wiley & Sons, New YorkGoogle Scholar
  25. Gross K, Cardinale BJ (2007) Does species richness drive community production or vice versa? Reconciling historical and contemporary paradigms in competitive communities. Am Nat 170(2):207–220CrossRefGoogle Scholar
  26. Hodapp D, Hillebrand H, Blasius B, Ryabov AB (2016) Environmental and trait variability constrain community structure and the biodiversity–productivity relationship. Ecology 97(6):1463–1474CrossRefGoogle Scholar
  27. Hubbell SP (2001) The unified neutral theory of biodiversity and biogeography. Princeton University Press, Princeton, New JerseyGoogle Scholar
  28. Huston M (1979) A general hypothesis of species diversity. Am Nat 113(1):81–101CrossRefGoogle Scholar
  29. Huston MA (1994) Biological diversity: the coexistence of species on changing landscapes. Cambridge University Press, CambridgeGoogle Scholar
  30. Huston MA, DeAngelis DL (1994) Competition and coexistence: the effects of resource transport and supply rates. Am Nat 144(6):954–977CrossRefGoogle Scholar
  31. Kadmon R, Benjamini Y (2006) Effects of productivity and disturbance on species richness: a neutral model. Am Nat 167(6):939–946CrossRefGoogle Scholar
  32. Kondoh M (2001) Unifying the relationships of species richness to productivity and disturbance. P R Soc B 268(1464):269–271CrossRefGoogle Scholar
  33. Levin SA, Muller-Landau HC, Nathan R, Chave J (2003) The ecology and evolution of seed dispersal: a theoretical perspective. Annu Rev Ecol Evol Syst 34:575–604CrossRefGoogle Scholar
  34. Lewandowska AM, Biermann A, Borer ET, Cebrián-Piqueras MA, Dederck SAJ, De Meester L,Van Donk E, Gamfeldt L, Gruner DS, Hagenah N, Harpole WS, Kirkman KP, Klausmeier CA, Kleyer M, Knops JMH, Lemmens P, Lind EM, Litchman E, Mantilla-Contreras J, Martens K, Meier S, Minden V, Moore JL, Venterink HO, Seabloom EW, Sommer U, Striebel M, Trenkamp A, Trinogga J, Urabe J, Vyverman W, Van de Waal DB, Widdicombe CE, Hillebrand H (2016) The influence of balanced and imbalanced resource supply on biodiversity–functioning relationship across ecosystems. Philos T R Soc B 371:20150283CrossRefGoogle Scholar
  35. Loreau M, Naeem S, Inchausti P, Bengtsson J, Grime JP, Hector A, Hooper DU, Huston MA, Raffaelli D, Schmid B, Tilman D, Wardle DA (2001) Biodiversity and ecosystem functioning: current knowledge and future challenges. Science 294(5543):804–808CrossRefGoogle Scholar
  36. Mittelbach GG, Steiner CF, Scheiner SM, Gross KL, Reynolds HL, Waide RB, Willig MR, Dodson SI, Gough L (2001) What is the observed relationship between species richness and productivity? Ecology 82(9):2381–2396CrossRefGoogle Scholar
  37. O’Dwyer JP, Green JL (2010) Field theory for biogeography: a spatially explicit model for predicting patterns of biodiversity. Ecol Lett 13(1):87–95CrossRefGoogle Scholar
  38. O’Dwyer JP, Cornell SJ (2018) Cross-scale neutral ecology and the maintenance of biodiversity. Sci Rep 8(1):10200CrossRefGoogle Scholar
  39. Poorter L, van der Sande MT, Thompson J, Arets EJMM, Alarcón A, Álvarez-Sánchez J, Ascarrunz N, Balvanera P, Barajas-Guzmán G, Boit A, Bongers F, Carvalho FA, Casanoves F, Cornejo-Tenorio G, Costa FRC, de Castilho CV, Duivenvoorden JF, Dutrieux LP, Enquist BJ, Fernández-Méndez F, Finegan B, Gormley LHL, Healey JR, Hoosbeek MR, Ibarra-Manríquez G, Junqueira AB, Levis C, Licona JC, Lisboa LS, Magnusson WE, Martínez-Ramos M, Martínez-Yrizar A, Martorano LG, Maskell LC, Mazzei L, Meave JA, Mora F, Muñoz R, Nytch C, Pansonato MP, Parr TW, Paz H, Pérez-García EA, Rentería LY, Rodríguez-Velazquez J, Rozendaal DMA, Ruschel AR, Sakschewski B, Salgado-Negret B, Schietti J, Simões M, Sinclair FL, Souza PF, Souza FC, Stropp J, ter Steege H, Swenson NG, Thonicke K, Toledo M, Uriarte M, van der Hout P, Walker P, Zamora N, Peña-Claros M (2015) Diversity enhances carbon storage in tropical forests. Glob Ecol Biogeogr 24(11):1314–1328CrossRefGoogle Scholar
  40. Preston FW (1960) Time and space and the variation of species. Ecology 41(4):612–627CrossRefGoogle Scholar
  41. Rosindell J, Cornell SJ (2013) Universal scaling of species-abundance distributions across multiple scales. Oikos 122(7):1101–1111CrossRefGoogle Scholar
  42. Schamp BS, Aarssen LW, Lee H (2003) Local plant species richness increases with regional habitat commonness across a gradient of forest productivity. Folia Geobot 38(3):273–280CrossRefGoogle Scholar
  43. Schenk HJ, Jackson RB (2002) Rooting depths, lateral root spreads and below-ground/above-ground allometries of plants in water-limited ecosystems. J Ecol 90(3):480–494CrossRefGoogle Scholar
  44. Simões NR, Colares MAM, Lansac-Tôha FA, Bonecker CC (2013) Zooplankton species richness–productivity relationship: confronting monotonic positive and hump-shaped models from a local perspective. Austral Ecol 38(8):952–958CrossRefGoogle Scholar
  45. Srivastava DS, Lawton JH (1998) Why more productive sites have more species: an experimental test of theory using tree-hole communities. Am Nat 152(4):510–529PubMedGoogle Scholar
  46. Storch D, Bohdalková E, Okie J (2018) The more-individuals hypothesis revisited: the role of community abundance in species richness regulation and the productivity–diversity relationship. Ecol Lett 21(6):920–937CrossRefGoogle Scholar
  47. Taylor DR, Aarssen LW, Loehle C (1990) On the relationship between r/K selection and environmental carrying capacity: a new habitat templet for plant life history strategies. Oikos 58(2):239–250CrossRefGoogle Scholar
  48. Thackeray SJ (2007) Crustacean zooplankton species richness and productivity: to what extent do the conclusions depend upon the choice of metric. Oikos 116(4):614–628CrossRefGoogle Scholar
  49. Tilman D (1982) Resource competition and community structure. Princeton University Press, Princeton, New JerseyGoogle Scholar
  50. Tilman D, Pacala S (1993) The maintenance of species richness in plant communities. In: Ricklefs RE, Schluter D (eds) Species diversity in ecological communities: historical and geographical perspectives. University of Chicago Press, Chicago, Illinois, USA, pp 13–25Google Scholar
  51. Tucker MA, Böhning-Gaese K, Fagan WF, Fryxell JM, Van Moorter B, Alberts SC, Ali AH, Allen AM, Attias N, Avgar T, Bartlam-Brooks H, Bayarbaatar B, Belant JL, Bertassoni A, Beyer D, Bidner L, van Beest FM, Blake S, Blaum N, Bracis C, Brown D, de Bruyn PJN, Cagnacci F, Calabrese JM, Camilo-Alves C, Chamaille-Jammes S, Chiaradia A, Davidson SC, Dennis T, DeStefano S, Diefenbach D, Douglas-Hamilton I, Fennessy J, Fichtel C, Fiedler W, Fischer C, Fischhoff I, Fleming CH, Ford AT, Fritz SA, Gehr B, Goheen JR, Gurarie E, Hebblewhite M, Heurich M, Hewison AJM, Hof C, Hurme E, Isbell LA, Janssen R, Jeltsch F, Kaczensky P, Kane A, Kappeler PM, Kauffman M, Kays R, Kimuyu D, Koch F, Kranstauber, B, LaPoint S, Leimgruber P, Linnell JDC, Lopez-Lopez P, Markham AC, Mattisson J, Medici EP, Mellone U, Merrill E, de Mirando Mourao G, Morato RG, Morellet N, Morrison TA, Diaz-Munoz SL, Mysterud A, Nandintsetseg D, Nathan R, Niamir A, Odden J, O’Hara RB, Oliveira-Santos LGR, Olson KA, Patterson BD, de Paula RC, Pedrotti L, Reineking B, Rimmler M, Rogers TL, Rolandsen CM, Rosenberry CS, Rubenstein DI, Safi K, Said S, Sapir N, Sawyer H, Schmidt NM, Selva N, Sergiel A, Shiilegdamba E, Silva JP, Singh N, Solberg EJ, Spiegel O, Strand O, Sundaresan S, Ullmann W, Voigt U, Wall J, Wattles D, Wikelski M, Wilmers CC, Wilson JW, Wittemyer G, Zieba F, Zwijacz-Kozica T, Mueller T (2018) Moving in the Anthropocene: global reductions in terrestrial mammalian movements. Science 359(6374):466–469CrossRefGoogle Scholar
  52. Vilà M, Vayreda J, Comas L, Ibáñez JJ, Mata T, Obón B (2007) Species richness and wood production: a positive association in Mediterranean forests. Ecol Lett 10(3):241–250CrossRefGoogle Scholar
  53. Volkov I, Banavar JR, Hubbell SP, Maritan A (2007) Patterns of relative species abundance in rainforests and coral reefs. Nature 450(7166):45–49CrossRefGoogle Scholar
  54. Waide RB, Willig MR, Steiner CF, Mittelbach G, Gough L, Dodson SI, Juday GP, Parmenter R (1999) The relationship between productivity and species richness. Annu Rev Ecol Evol Syst 30:257–300CrossRefGoogle Scholar
  55. Weitz JS, Rothman DH (2003) Scale-dependence of resource-biodiversity relationships. J Theor Biol 225(2):205–214CrossRefGoogle Scholar
  56. Wennekes PL, Rosindell J, Etienne RS (2012) The neutral–niche debate: a philosophical perspective. Acta Biotheor 60:257–271CrossRefGoogle Scholar
  57. Whittaker RJ, Heegaard E (2003) What is the observed relationship between species richness and productivity? Comment. Ecology 84(12):3384–3390CrossRefGoogle Scholar
  58. Whittaker RJ (2010) Meta-analyses and mega-mistakes: calling time on meta-analysis of the species richness–productivity relationship. Ecology 91(9):2522–2533CrossRefGoogle Scholar
  59. Wright DH (1983) Species-energy theory: an extension of species-area theory. Oikos 41(3):496–506CrossRefGoogle Scholar
  60. Yee DA, Juliano SA (2007) Abundance matters: a field experiment testing the more individuals hypothesis for richness–productivity relationships. Oecologia 153(1):153–162CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Biological SciencesNational University of SingaporeSingaporeSingapore
  2. 2.State Key Laboratory of Grassland and Agro-Ecosystems, School of Life SciencesLanzhou UniversityLanzhouPeople’s Republic of China

Personalised recommendations