Modeling community assembly on growing habitat “islands”: a case study on trees and their vascular epiphyte communities

  • Lena Spruch
  • Jost Hellwig
  • Gerhard Zotz
  • Bernd BlasiusEmail author


The number of available sites for establishment is a key determinant of species richness on habitat islands. While most theoretical studies assume habitat size or capacity to be constant, many natural habitats are characterized by dynamic growth in capacity over ecological timescales. A case in point is provided by trees that serve as habitat for vascular and non-vascular epiphytes. Here, we develop a modeling framework, based on neutral theory, to address the effects of habitat growth on community development, i.e., species richness and abundance. The model is parameterized to the situation of vascular epiphyte communities in tropical lowland forests and includes stochastic reproduction, death, and immigration events from a larger metacommunity. Using numerical simulations, we explore the proportion of growing sites occupied by individuals, the number of empty unoccupied sites, as well as changes in species abundances, species richness, colonization and extinction rates, and the dependence on the abundance in the metacommunity throughout the growth of the habitat. Our analysis suggests two characteristic phases of community development in a growing habitat: (i) an initial phase, characterized by a rapid buildup of empty sites, a slow increase in species abundance, and a fast increase in species richness, and (ii) a second phase, in which the number of empty sites reaches an equilibrium, species richness is accumulating very slowly, while the number of individuals increases unabatedly with habitat capacity.


Island biogeography Neutral theory Non-equilibrium Biodiversity Vascular epiphytes 


Author contributions

BB and GZ conceived the study; LS and JH implemented the model; LS and BB prepared the manuscript. All authors critically revised the manuscript.

Funding information

LS was funded by the Ministry of Science and Culture of Lower Saxony (Niedersächsiches Ministerium für Wissenschaft und Kultur (MWK)) within the research training program IBR (Interdisciplinary Approach to Functional Biodiversity Research). Funding for field work in Panama was provided by Deutsche Forschungsgemeinschaft (DFG ZO 94/5-1).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Acuña-Tarazona M, Toledo-Aceves T, Flores-Palacios A, Sosa VJ, Martínez ML (2015) Post-stripping recolonization of vascular epiphytes in cloud-forest fragments in Mexico. J Trop Ecol 31:499–508. CrossRefGoogle Scholar
  2. Blick R, Burns K (2009) Network properties of aboreal plants: are epiphytes, mistletoes and lianas structured similarly? Perspect Plant Ecol Syst 11:41–52. CrossRefGoogle Scholar
  3. Boelter, C.R., Zartman, C.E., Fonseca, C.R., 2011. Exotic tree monocultures play a limited role in the conservation of Atlantic Forest epiphytes. Biodivers. Conserv. 20, 1255–1272CrossRefGoogle Scholar
  4. Borregaard MK, Matthews TJ, Whittaker RJ (2015) The general dynamic model: towards a unified theory of island biogeography? Glob Ecol Biogeogr 25:805–816. CrossRefGoogle Scholar
  5. Borregaard MK, Amorim IR, Borges PAV, Cabral JS, Fernández-Palacios JM, Field R, Heaney LR, Kreft H, Matthews TJ, Olesen JM, Price J, Rigal F, Steinbauer MJ, Triantis KA, Valente L, Weigelt P, Whittaker RJ (2017) Oceanic island biogeography through the lens of the general dynamic model: assessment and prospect. Biol Rev 92:830–853. CrossRefPubMedGoogle Scholar
  6. Bowmen DMJS, Brienen RJW, Gloor E, Phillips OL, Prior LD (2013) Detecting trends in tree growth: not so simple. Trends Plant Sci 18:11–17. CrossRefGoogle Scholar
  7. Burns KC (2007) Network properties of an epiphyte metacommunity. J Ecol 95:1142–1151. CrossRefGoogle Scholar
  8. Burns KC, Zotz G (2010) A hierarchical framework for investigating epiphyte assemblages: networks, meta-communities, and scale. Ecology 91:377–385. CrossRefPubMedGoogle Scholar
  9. Cabral JS, Petter G, Mendieta Leiva G, Wagner K, Zotz G, Kreft H (2015) Branchfall as a demographic filter for epiphyte communities: lessons from forest floor-based sampling. PLoS One 10:e0128019. CrossRefGoogle Scholar
  10. Chave J (2004) Neutral theory and community ecology. Ecol Lett 7:241–253. CrossRefGoogle Scholar
  11. Condit R, Pitman N, Leigh EG, Chave J, Terborgh J, Foster RB, Núñez P, Aguilar S, Valencia R, Villa G, Muller-Landau HC, Losos E, Hubbell SP (2002) Beta-diversity in tropical forest trees. Science 295:666–669. CrossRefPubMedGoogle Scholar
  12. Einzmann HJR, Zotz G (2017) “No signs of saturation”: long-term dynamics of vascular epiphyte communities in a human-modified landscape. Biodivers Conserv 26:1393–1410. CrossRefGoogle Scholar
  13. Flores-Palacios A, García-Franco JG (2006) The relationship between tree size and epiphyte species richness: testing four different hypotheses. J Biogeogr 33:323–330. CrossRefGoogle Scholar
  14. Fox JC, Ades PK, Bi H (2001) Stochastic structure and individual-tree growth models. For Ecol Manag 154:261–276. CrossRefGoogle Scholar
  15. Gentry AH, Dodson CH (1987) Diversity and biogeography of neotropical vascular epiphytes. Ann Mo Bot Gard 74:205–233. CrossRefGoogle Scholar
  16. Harper JL (1977) Population biology of plants. London Academic Press, LondonGoogle Scholar
  17. Hietz P (1997) Population dynamics of epiphytes in a Mexican humid montane forest. J Ecol 85:767–775. CrossRefGoogle Scholar
  18. Hietz P, Hietz-Seifert U (1995) Composition and ecology of vascular epiphyte communities along an altitudinal gradient in central Veracruz, Mexico. J Veg Sci 6:487–498. CrossRefGoogle Scholar
  19. Honerkamp J (1993) Stochastic dynamical systems: concepts, numerical methods, data analysis. John Wiley & Sons, New YorkGoogle Scholar
  20. Hubbell SP (2001) The unified neutral theory of biodiversity and biogeography. Princeton University Press, PrincetonGoogle Scholar
  21. Kelly DL, Tanner EVJ, Lughadha EMN, Kapos V (1994) Floristics and biogeography of a rain forest in the Venezuelan Andes. J Biogeogr 21:421. CrossRefGoogle Scholar
  22. Kier G, Kreft H, Lee TM, Jetz W, Ibisch PL, Nowicki C, Mutke J, Barthlott W (2009) A global assessment of endemism and species richness across island and mainland regions. Proc Natl Acad Sci 106:9322–9327. CrossRefPubMedGoogle Scholar
  23. Kitching RL (2006) Crafting the pieces of the diversity jigsaw puzzle. Science 313:1055–1057. CrossRefPubMedGoogle Scholar
  24. Kreft H, Jetz W, Mutke J, Kier G, Barthlott W (2007) Global diversity of island floras from a macroecological perspective. Ecol Lett 11:116–127. CrossRefPubMedGoogle Scholar
  25. Laube S, Zotz G (2006) Long-term changes of the vascular epiphyte assemblage on the palm Socratea exorrhiza in a lowland forest in Panama. J Veg Sci 17:307–314. CrossRefGoogle Scholar
  26. Laube S, Zotz G (2007) A metapopulation approach to the analysis of long-term changes in the epiphyte vegetation on the host tree Annona glabra. J Veg Sci 18:613–624. CrossRefGoogle Scholar
  27. Lim JY, Marshall CR (2017) The true tempo of evolutionary radiation and decline revealed on the Hawaiian archipelago. Nature 543:710–713. CrossRefPubMedGoogle Scholar
  28. Lomolino MV (2000) Ecology’s most general, yet protean pattern: the species-area relationship. J Biogeogr 27:17–26. CrossRefGoogle Scholar
  29. MacArthur RH, Wilson EO (1967) The theory of island biogeography. Princeton University Press, PrincetonGoogle Scholar
  30. Mendieta-Leiva G, Zotz G (2015) A conceptual framework for the analysis of vascular epiphyte assemblages. Perspect Plant Ecol Syst 17:510–521. CrossRefGoogle Scholar
  31. Mondragón D, Valverde T, Hernández-Apolinar M (2015) Population ecology of epiphytic angiosperms: a review. Trop Ecol 56:01–39. CrossRefGoogle Scholar
  32. Patiño J, Whittaker RJ, Borges PAV, Fernández-Palacios JM, Ah-Peng C, Araújo MB, Ávila SP, Cardoso P, Cornuault J, de Boer EJ, de Nascimento L, Gil A, González-Castro A, Gruner DS, Heleno R, Hortal J, Illera JC, Kaiser-Bunbury CN, Matthews TJ, Papadopoulou A, Pettorelli N, Price JP, Santos AMC, Steinbauer MJ, Triantis KA, Valente L, Vargas P, Weigelt P, Emerson BC (2017) A roadmap for island biology: 50 fundamental questions after 50 years of The Theory of Island Biogeography. J Biogeogr 44:963–983. CrossRefGoogle Scholar
  33. Petter G, Wagner K, Wanek W, Sánchez Delgado EJ, Zotz G, Cabral JS, Kreft H (2016) Functional leaf traits of vascular epiphytes: vertical trends within the forest, intra- and interspecific trait variability, and taxonomic signals. Funct Ecol 30:188–198. CrossRefGoogle Scholar
  34. Ricklefs RE, Schulter D (1993) Species diversity in ecological communities: historical and geographical perspectives. University of Chicago Press, ChicagoGoogle Scholar
  35. Rosenzweig ML (1995) Species diversity in space and time. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  36. Rosindell J, Hubbell SP, Etienne RS (2011) The unified neutral theory of biodiversity and biogeography at age ten. Trends Ecol Evol 26:340–348CrossRefPubMedGoogle Scholar
  37. Schmit-Neuerburg V (2002) Dynamics of vascular epiphyte vegetation in the Venezuelan lowland rain forest of the Surumoni Crane Project. PhD thesis, Rheinische Friedrich-Wilhelms-Universität BonnGoogle Scholar
  38. Taylor A, Burns K (2015) Epiphyte community development throughout tree ontogeny: an island ontogeny framework. J Veg Sci 26:902–910. CrossRefGoogle Scholar
  39. Thomsen MS, Altieri AH, Angelini C, Bishop MJ, Gribben PE, Lear G, He Q, Schiel DR, Silliman BR, South PM, Watson DM, Wernberg T, Zotz G (2018) Secondary foundation species enhance biodiversity. Nat Ecol Evol 2:634–639CrossRefGoogle Scholar
  40. Wagner K, Mendieta-Leiva G, Zotz G (2015) Host specificity in vascular epiphytes: a review of methodology, empirical evidence and potential mechanisms. AoB Plants 7:plu092. CrossRefPubMedPubMedCentralGoogle Scholar
  41. Warren BH, Simberloff D, Ricklefs RE, Aguilée R, Condamine FL, Gravel D, Morlon H, Mouquet N, Rosindell J, Casquet J, Conti E, Cornuault J, Fernández-Palacios JM, Hengl T, Norder SJ, Rijsdijk KF, Sanmartín I, Strasberg D, Triantis KA, Valente LM, Whittaker RJ, Gillespie RG, Emerson BC, Thébaud C (2015) Islands as model systems in ecology and evolution: prospects fifty years after MacArthur-Wilson. Ecol Lett 18:200–217. CrossRefPubMedGoogle Scholar
  42. Whittaker RJ, Ladle RJ, Araújo MB, Fernández-Palacios JM, Delgado JD, Arévalo JR (2007) The island immaturity—speciation pulse model of island evolution: an alternative to the “diversity begets diversity” model. Ecography 30:321–327. CrossRefGoogle Scholar
  43. Whittaker RJ, Triantis KA, Ladle RJ (2008) A general dynamic theory of oceanic island biogeography. J Biogeogr 35:977–994. CrossRefGoogle Scholar
  44. Woods CL (2017) Primary ecological succession in vascular epiphytes: the species accumulation model. Biotropica 49:452–460. CrossRefGoogle Scholar
  45. Woods CL, Cardelús CL, DeWalt SJ (2015) Microhabitat associations of vascular epiphytes in a wet tropical forest canopy. J Ecol 103:421–430. CrossRefGoogle Scholar
  46. Zotz G (2007) Johansson revisited: the spatial structure of epiphyte assemblages. J Veg Sci 18:123–130. CrossRefGoogle Scholar
  47. Zotz G (2013) The systematic distribution of vascular epiphytes—a critical update. Bot J Linn Soc 171:453–481. CrossRefGoogle Scholar
  48. Zotz G (2016) Plants on plants—the biology of vascular epiphytes. Springer International Publishing, SwitzerlandCrossRefGoogle Scholar
  49. Zotz G, Schultz S (2008) The vascular epiphytes of a lowland forest in Panama—species composition and spatial structure. Plant Ecol 195:131–141. CrossRefGoogle Scholar
  50. Zotz G, Vollrath B (2003) The epiphyte vegetation on the palm Socratea exorrhiza—correlations with tree size, tree age and bryophyte cover. J Trop Ecol 19:81–90. CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Institute for Chemistry and Biology of the Marine Environment (ICBM)Carl-von-Ossietzky UniversityOldenburgGermany
  2. 2.Environmental Hydrological Systems, Faculty of Environment and Natural ResourcesUniversity of FreiburgFreiburgGermany
  3. 3.Institute for Biology and Environmental SciencesCarl-von-Ossietzky UniversityOldenburgGermany
  4. 4.Smithsonian Tropical Research InstituteAnconRepublic of Panama
  5. 5.Helmholtz Institute for Functional Marine BiodiversityUniversity of Oldenburg (HIFMB)OldenburgGermany

Personalised recommendations