Interplay of spatial dynamics and local adaptation shapes species lifetime distributions and species–area relationships

Abstract

The distributions of species lifetimes and species in space are related, since species with good local survival chances have more time to colonize new habitats and species inhabiting large areas have higher chances to survive local disturbances. Yet, both distributions have been discussed in mostly separate communities. Here, we study both patterns simultaneously using a spatially explicit, evolutionary meta-food web model, consisting of a grid of patches, where each patch contains a local food web. Species survival depends on predation and competition interactions, which in turn depend on species body masses as the key traits. The system evolves due to the migration of species to neighboring patches, the addition of new species as modifications of existing species, and local extinction events. The structure of each local food web thus emerges in a self-organized manner as the highly non-trivial outcome of the relative time scales of these processes. Our model generates a large variety of complex, multi-trophic networks and therefore serves as a powerful tool to investigate ecosystems on long temporal and large spatial scales. We find that the observed lifetime distributions and species–area relations resemble power laws over appropriately chosen parameter ranges and thus agree qualitatively with empirical findings. Moreover, we observe strong finite-size effects, and a dependence of the relationships on the trophic level of the species. By comparing our results to simple neutral models found in the literature, we identify the features that affect the values of the exponents.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Allhoff KT, Drossel B (2013) When do evolutionary food web models generate complex structures?. J Theor Biol 334:122–129. https://doi.org/10.1016/j.jtbi.2013.06.008. http://www.sciencedirect.com/science/article/pii/S0022519313002804

    Article  PubMed  Google Scholar 

  2. Allhoff KT, Ritterskamp D, Rall BC, Drossel B, Guill C (2015) Evolutionary food web model based on body masses gives realistic networks with permanent species turnover. Sci Rep 5:10955. https://doi.org/10.1038/srep10955

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Allhoff KT, Weiel EM, Rogge T, Drossel B (2015) On the interplay of speciation and dispersal: an evolutionary food web model in space. J Theor Biol 366:46–56. https://doi.org/10.1016/j.jtbi.2014.11.006

    PubMed  Google Scholar 

  4. Arrhenius O (1921) Species and area. J Ecol 9(1):95–99

    Google Scholar 

  5. Azaele S, Suweis S, Grilli J, Volkov I, Banavar JR, Maritan A (2016) Statistical mechanics of ecological systems: neutral theory and beyond. Rev Mod Phys 88:035,003. https://doi.org/10.1103/RevModPhys.88.035003. https://link.aps.org/doi/10.1103/RevModPhys.88.035003

    Article  Google Scholar 

  6. Bak P, Sneppen K (1993) Punctuated equilibrium and criticality in a simple model of evolution. Phys Rev Lett 71(24):4083

    CAS  PubMed  Google Scholar 

  7. Barnosky AD, Matzke N, Tomiya S, Wogan GO, Swartz B, Quental TB, Marshall C, McGuire JL, Lindsey EL, Maguire KC et al (2011) Has the earth’s sixth mass extinction already arrived? Nature 471(7336):51–57

    CAS  PubMed  Google Scholar 

  8. Barter E, Gross T (2017) Spatial effects in meta-foodwebs. Sci Report 7 (9980):2045–2322. https://doi.org/10.1038/s41598-017-08666-8

    Google Scholar 

  9. Bertuzzo E, Suweis S, Mari L, Maritan A, Rodríguez-Iturbe I, Rinaldo A (2011) Spatial effects on species persistence and implications for biodiversity. Proc Natl Acad Sci 108(11):4346–4351. https://doi.org/10.1073/pnas.1017274108. http://www.pnas.org/content/108/11/4346.abstract

    Article  PubMed  Google Scholar 

  10. Binzer A, Brose U, Curtsdotter A, Eklöf A, Rall BC, Riede JO, de Castro F (2011) The susceptibility of species to extinctions in model communities. Basic Appl Ecol 12(7):590–599. https://doi.org/10.1016/j.baae.2011.09.002. http://www.sciencedirect.com/science/article/pii/S1439179111001150

    Article  Google Scholar 

  11. Bolchoun L, Drossel B, Allhoff KT (2017) Spatial topologies affect local food web structure and diversity in evolutionary metacommunities. Sci Rep 7:1818

    PubMed  PubMed Central  Google Scholar 

  12. Brännström Å, Loeuille N, Loreau M, Dieckmann U (2011) Emergence and maintenance of biodiversity in an evolutionary food-web model. Theor Ecol 4(4):467–478

    Google Scholar 

  13. Calcagno V, Jarne P, Loreau M, Mouquet N, David P (2017) Diversity spurs diversification in ecological communities. Nature 8(15):810

    Google Scholar 

  14. Caldarelli G, Higgs PG, McKane AJ (1998) Modelling coevolution in multispecies communities. J Theor Biol 193:345–358. arXiv:adap-org/9801003v2

    CAS  PubMed  Google Scholar 

  15. Caswell H, Cohen JE (1993) Local and regional regulation of species-area relations: a patch-occupancy model. Species diversity in ecological communities 7:99–107

    Google Scholar 

  16. Chesson P (2000) Mechanisms of maintenance of species diversity. Annu Rev Ecol Syst 31(1):343–366

    Google Scholar 

  17. Connor EF, McCoy ED (1979) The statistics and biology of the species-area relationship. Am Nat 113 (6):791–833

    Google Scholar 

  18. Dengler J (2009) Which function describes the species–area relationship best? A review and empirical evaluation. J Biogeogr 36(4):728–744

    Google Scholar 

  19. Desmet P, Cowling R (2004) Using the species–area relationship to set baseline targets for conservation. Ecol Soc 9(2):11

    Google Scholar 

  20. Drakare S, Lennon JJ, Hillebrand H (2006) The imprint of the geographical, evolutionary and ecological context on species–area relationships. Ecol Lett 9(2):215–227

    PubMed  Google Scholar 

  21. Drossel B (1998) Extinction events and species lifetimes in a simple ecological model. Phys Rev Lett 81:5011–5014. https://doi.org/10.1103/PhysRevLett.81.5011. https://link.aps.org/doi/10.1103/PhysRevLett.81.5011

    CAS  Article  Google Scholar 

  22. Drossel B (2001) Biological evolution and statistical physics. Adv Phys 50(2):209–295. https://doi.org/10.1080/00018730110041365. http://www.tandfonline.com/doi/abs/10.1080/00018730110041365

    CAS  Article  Google Scholar 

  23. Drossel B, Higgs PG, McKane AJ (2001) The influence of predator-prey population dynamics on the long-term evolution of food web structure. J Theor Biol 208(1):91–107. https://doi.org/10.1006/jtbi.2000.2203. http://www.sciencedirect.com/science/article/pii/S0022519300922033

    CAS  Article  PubMed  Google Scholar 

  24. Durrett R, Levin S (1996) Spatial models for species-area curves. J Theor Biol 179(2):119–127

    Google Scholar 

  25. Gaston K, Blackburn T (2008) Pattern and process in macroecology. John Wiley & Sons

  26. Gleason HA (1922) On the relation between species and area. Ecology 3(2):158–162

    Google Scholar 

  27. Gomulkiewicz R, Holt RD (1995) When does evolution by natural selection prevent extinction? Evolution 49(1):201–207

    PubMed  Google Scholar 

  28. Gravel D, Canard E, Guichard F, Mouquet N (2011) Persistence increases with diversity and connectance in trophic metacommunities. PloS one 6(5):e19,374

    CAS  Google Scholar 

  29. Guill C, Drossel B (2008) Emergence of complexity in evolving niche-model food webs. J Theor Biol 251(1):108–120. https://doi.org/10.1016/j.jtbi.2007.11.017. http://www.sciencedirect.com/science/article/pii/S0022519307005760

    Article  PubMed  Google Scholar 

  30. Hairston NG, Ellner SP, Geber MA, Yoshida T, Fox JA (2005) Rapid evolution and the convergence of ecological and evolutionary time. Ecol Lett 8(10):1114–1127

    Google Scholar 

  31. Hanski I (1991) Single-species metapopulation dynamics: concepts, models and observations. Biol J Linn Soc 42(1-2):17–38

    Google Scholar 

  32. Hanski I (1994) A practical model of metapopulation dynamics. J Anim Ecol 63(1):151–162. http://www.jstor.org/stable/5591

    Google Scholar 

  33. He F, Legendre P (1996) On species-area relations. Am Nat 148(4):719–737

    Google Scholar 

  34. He F, Legendre P (2002) Species diversity patterns derived from species–area models. Ecology 83(5):1185–1198

    Google Scholar 

  35. Holt RD, Lawton JH, Polis GA, Martinez ND (1999) Trophic rank and the species–area relationship. Ecology 80(5):1495–1504

    Google Scholar 

  36. Keitt TH, Stanley HE (1998) Dynamics of north american breeding bird populations. Nature 393:257–260. https://doi.org/10.1038/30478

    CAS  Google Scholar 

  37. Kilburn PD (1966) Analysis of the species-area relation. Ecology 47(5):831–843

    Google Scholar 

  38. Kirkpatrick M, Barton NH (1997) Evolution of a species’ range. Am Nat 150(1):1–23

    CAS  PubMed  Google Scholar 

  39. Lawson D, Jensen HJ (2006) The species–area relationship and evolution. J Theor Biol 241(3):590–600

    PubMed  Google Scholar 

  40. Loeuille N, Leibold M (2008) Ecological consequences of evolution in plant defenses in a metacommunity. Theor Popul Biol 74(1):34–45

    CAS  PubMed  Google Scholar 

  41. Loeuille N, Loreau M (2005) Evolutionary emergence of size-structured food webs. PNAS 102(16):5761–5766. https://doi.org/10.1073/pnas.0408424102. http://www.pnas.org/content/102/16/5761.abstract

    CAS  Article  PubMed  Google Scholar 

  42. Lomolino MV (2000) Ecology’s most general, yet protean pattern: The species-area relationship. J Biogeogr 27(1):17–26

    Google Scholar 

  43. MacArthur RH, Wilson EO (1963) An equilibrium theory of insular zoogeography. Evolution 17(4):373–387

    Google Scholar 

  44. Manrubia S, Paczuski M (1998) A simple model of large scale organization in evolution. Int J Modern Phys C 9(07):1025–1032

    Google Scholar 

  45. McCann KS, Rasmussen JB, Umbanhowar J (2005) The dynamics of spatially coupled food webs. Ecol Lett 8(5):513–523. https://doi.org/10.1111/j.1461-0248.2005.00742.x

    CAS  PubMed  Google Scholar 

  46. Mcguinness KA (1984) Species–area curves. Biol Rev 59(3):423–440

    Google Scholar 

  47. Newman M (1996) Self-organized criticality, evolution and the fossil extinction record. Proc R Soc Lond B Biol Sci 263(1376):1605–1610

    Google Scholar 

  48. Newman M (1997) A model of mass extinction. J Theor Biol 189(3):235–252. https://doi.org/10.1006/jtbi.1997.0508. http://www.sciencedirect.com/science/article/pii/S0022519397905087

    CAS  Article  PubMed  Google Scholar 

  49. Newman M, Palmer R (1999) Models of extinction: A review. arXiv:adap-org/9908002

  50. Norberg J, Urban MC, Vellend M, Klausmeier CA, Loeuille N (2012) Eco-evolutionary responses of biodiversity to climate change. Nat Clim Change 2(10):747–751. https://doi.org/10.1038/nclimate1588

    Google Scholar 

  51. Nunes Amaral LA, Meyer M (1999) Environmental changes, coextinction, and patterns in the fossil record. Phys Rev Lett 82:652–655. https://doi.org/10.1103/PhysRevLett.82.652. https://link.aps.org/doi/10.1103/PhysRevLett.82.652

    CAS  Article  Google Scholar 

  52. Pantel JH, Duvivier C, Meester LD (2015) Rapid local adaptation mediates zooplankton community assembly in experimental mesocosms. Ecol Lett 18(10):992–1000

    PubMed  Google Scholar 

  53. Pigolotti S, Cencini M, Molina D, Muñoz MA (2017) Stochastic spatial models in ecology: A statistical physics approach. Journal of Statistical Physics. https://doi.org/10.1007/s10955-017-1926-4

    Google Scholar 

  54. Pigolotti S, Flammini A, Marsili M, Maritan A (2005) Species lifetime distribution for simple models of ecologies. Proc Natl Acad Sci USA 102(44):15,747–15,751. https://doi.org/10.1073/pnas.0502648102. http://www.pnas.org/content/102/44/15747.abstract

    CAS  Article  Google Scholar 

  55. Pillai P, Gonzalez A, Loreau M (2011) Metacommunity theory explains the emergence of food web complexity. Proc Natl Acad Sci 108(48):19,293–19,298

    CAS  Google Scholar 

  56. Pillai P, Loreau M, Gonzalez A (2010) A patch-dynamic framework for food web metacommunities. Theor Ecol 3(4):223–237. https://doi.org/10.1007/s12080-009-0065-1

    Google Scholar 

  57. Plitzko SJ, Drossel B (2015) The effect of dispersal between patches on the stability of large trophic food webs. Theor Ecol 8(2):233–244

    Google Scholar 

  58. Raup D (1986) Biological extinction in earth history. Science 231(4745):1528–1533. https://doi.org/10.1126/science.11542058. http://www.sciencemag.org/content/231/4745/1528.abstract

    CAS  Article  PubMed  Google Scholar 

  59. Raup DM (1991) A kill curve for phanerozoic marine species. Paleobiology 17(1):37–48. https://doi.org/10.1017/S0094837300010332

    CAS  PubMed  Google Scholar 

  60. Raup DM, Sepkoski JJ (1982) Mass extinctions in the marine fossil record. Science 215(4539):1501–1503. https://doi.org/10.1126/science.215.4539.1501. http://science.sciencemag.org/content/215/4539/1501

    CAS  Article  PubMed  Google Scholar 

  61. Richhardt J, Plitzko SJ, Schwarzmüller F, Drossel B (2015) The influence of the migration network topology on the stability of a small food web. Journal of Complex Networks. http://comnet.oxfordjournals.org/content/early/2015/07/21/comnet.cnv019.abstract

  62. Rosindell J, Cornell SJ (2007) Species–area relationships from a spatially explicit neutral mpodel in an infinite landscape. Ecol Lett 10(7):586–595

    PubMed  Google Scholar 

  63. Rossberg A, Ishii R, Amemiya T, Itoh K (2008) The top-down mechanism for body-mass-abundance scaling. Ecology 89(2):567–80. http://ukpmc.ac.uk/abstract/MED/18409445

    CAS  PubMed  Google Scholar 

  64. Scheiner SM (2003) Six types of species-area curves. Glob Ecol Biogeogr 12(6):441–447. https://doi.org/10.1046/j.1466-822X.2003.00061.x

    Google Scholar 

  65. Sole RV, Bascompte J (1996) Are critical phenomena relevant to large-scale evolution? Proc R Soc Lond B Biol Sci 263(1367):161–168

    CAS  Google Scholar 

  66. Tjørve E (2003) Shapes and functions of species–area curves: a review of possible models. J Biogeogr 30(6):827–835

    Google Scholar 

  67. Triantis K, Mylonas M, Lika K, Vardinoyannis K (2003) A model for the species–area–habitat relationship. J Biogeogr 30(1):19–27

    Google Scholar 

  68. Urban MC, Leibold MA, Amarasekare P, De Meester L, Gomulkiewicz R, Hochberg ME, Klausmeier CA, Loeuille N, De Mazancourt C, Norberg J et al (2008) The evolutionary ecology of metacommunities. Trends Ecol Evol 23(6):311–317. https://doi.org/10.1016/j.tree.2008.02.007

    PubMed  Google Scholar 

  69. Williams RJ, Martinez ND (2000) Simple rules yield complex food webs. Nature 404:180–182

    CAS  PubMed  Google Scholar 

  70. Willis JC (1922) Age and area, The University Press, Cambridge

  71. Yodzis P, Innes S (1992) Body size and consumer-resource dynamics. Am Nat 139:1151–1175

    Google Scholar 

  72. Zaoli S, Giometto A, Maritan A, Rinaldo A (2017) Covariations in ecological scaling laws fostered by community dynamics. Proc Natl Acad Sci 114(40):10,672–10,677. https://doi.org/10.1073/pnas.1708376114

    CAS  Article  Google Scholar 

  73. žliobaitė I, Fortelius M, Stenseth NC (2017) Reconciling taxon senescence with the red queen’s hypothesis. Nature 552(7683): 92

    PubMed  Google Scholar 

Download references

Acknowledgements

The bachelor thesis of Johannes Reinhard contributed to the initial stage of this study by demonstrating that including a spontaneous extinction rate is essential for obtaining an ongoing species turnover.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Tobias Rogge.

Additional information

This work was supported by the German Research Foundation (DFG) under contract numbers Dr300/12 and Dr300/13. KTA was additionally supported by the French National Research Agency (ANR) through project ARSENIC (grant no. 14-CE02-0012).

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 0.99 MB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rogge, T., Jones, D., Drossel, B. et al. Interplay of spatial dynamics and local adaptation shapes species lifetime distributions and species–area relationships. Theor Ecol 12, 437–451 (2019). https://doi.org/10.1007/s12080-019-0410-y

Download citation

Keywords

  • Evolutionary assembly
  • Trophic interactions
  • Body mass evolution
  • Metapopulations
  • Dispersal