Spatial and interspecific differences in recruitment decouple synchrony and stability in trophic metacommunities

Abstract

Although synchronized oscillations in abundance across spatially segregated populations are a quasi-universal phenomenon, understanding their consequences for the stability of natural systems remains a major challenge. Theory has shown that even low levels of dispersal can synchronize and destabilize populations at both local and global scales. However, little is known about how persistent spatial and interspecific differences in recruitment influence the relationship between dispersal, synchrony, and stability across scales. Using a trophic metacommunity model to represent a set of local keystone food web modules connected via a global propagule pool, we show that spatial and interspecific differences in recruitment give rise to a complex relationship between dispersal, synchrony, and stability. Increasing dispersal from low to intermediate levels dampens both the synchrony and the magnitude of population oscillations and thus stabilizes their dynamics, regardless of interspecific differences in recruitment. However, increasing dispersal from intermediate to high levels generates increasingly large and synchronized population oscillations that destabilize the dynamics of all species. Importantly, when dispersal is high, interspecific differences in spatial recruitment patterns reduce the dispersal-induced destabilization via a trophic decoupling effect that buffers local population growth. Overall, our results suggest that spatial and interspecific differences in recruitment rates can interact in complex ways to alter the relationships between dispersal, synchrony, and stability in trophically structured metacommunities.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Abbott KC (2011) A dispersal-induced paradox: synchrony and stability in stochastic metapopulations. Ecol Lett 14:1158–1169. https://doi.org/10.1111/j.1461-0248.2011.01670.x

    Article  PubMed  Google Scholar 

  2. Berkley HA, Kendall BE, Mitarai S, Siegel DA (2010) Turbulent dispersal promotes species coexistence. Ecol Lett 13:360–371. https://doi.org/10.1111/j.1461-0248.2009.01427.x

    Article  PubMed  PubMed Central  Google Scholar 

  3. Bjørnstad ON, Ims RA, Lambin X (1999) Spatial population dynamics: analyzing patterns and processes of population synchrony. Trends Ecol Evol 14:427–432. https://doi.org/10.1016/S0169-5347(99)01677-8

    Article  PubMed  Google Scholar 

  4. Blasius B, Huppert A, Stone L (1999) Complex dynamics and phase synchronization in spatially extended ecological systems. Nature 399:354–359. https://doi.org/10.1038/20676

    CAS  Article  PubMed  Google Scholar 

  5. Briggs CJ, Hoopes MF (2004) Stabilizing effects in spatial parasitoid–host and predator–prey models: a review. Theor Popul Biol 65:299–315. https://doi.org/10.1016/j.tpb.2003.11.001

    Article  PubMed  Google Scholar 

  6. Brown JH, Kodric-Brown A (1977) Turnover rates in insular biogeography: effect of immigration on extinction. Ecology 58:445–449. https://doi.org/10.2307/1935620

    Article  Google Scholar 

  7. Cheal AJ, Delean S, Sweatman H, Thompson AA (2007) Spatial synchrony in coral reef fish populations and the influence of climate. Ecology 88:158–169. https://doi.org/10.1890/0012-9658(2007)88[158:SSICRF]2.0.CO;2

    CAS  Article  Google Scholar 

  8. Earn DJD, Levin SA, Rohani P (2000) Coherence and conservation. Science 290:1360–1364. https://doi.org/10.1126/science.290.5495.1360

    CAS  Article  PubMed  Google Scholar 

  9. Fontaine C, Gonzalez A (2005) Population synchrony induced by resource fluctuations and dispersal in an aquatic microcosm. Ecology 86:1463–1471. https://doi.org/10.1890/04-1400

    Article  Google Scholar 

  10. Goldwyn EE, Hastings A (2008) When can dispersal synchronize populations? Theor Popul Biol 73:395–402. https://doi.org/10.1016/j.tpb.2007.11.012

    Article  PubMed  Google Scholar 

  11. Gouhier TC, Guichard F (2014) Synchrony: quantifying variability in space and time. Methods Ecol Evol 5:524–533. https://doi.org/10.1111/2041-210X.12188

    Article  Google Scholar 

  12. Gouhier TC, Guichard F, Gonzalez A (2010a) Synchrony and stability of food webs in metacommunities. Am Nat 175:E16–E34. https://doi.org/10.1086/649579

    Article  PubMed  Google Scholar 

  13. Gouhier TC, Guichard F, Menge BA (2010b) Ecological processes can synchronize marine population dynamics over continental scales. PNAS 107:8281–8286. https://doi.org/10.1073/pnas.0914588107

    Article  PubMed  Google Scholar 

  14. Grenfell BT, Wilson K, Finkenstädt BF, Coulson TN, Murray S, Albon SD, Pemberton JM, Clutton-Brock TH, Crawley MJ (1998) Noise and determinism in synchronized sheep dynamics. Nature 394:674–677. https://doi.org/10.1038/29291

    CAS  Article  Google Scholar 

  15. Hassell MP, Comins HN, May RM (1991) Spatial structure and chaos in insect population dynamics. Nature 353:255–258. https://doi.org/10.1038/353255a0

    Article  Google Scholar 

  16. Holland MD, Hastings A (2008) Strong effect of dispersal network structure on ecological dynamics. Nature 456:792–794. https://doi.org/10.1038/nature07395

    CAS  Article  PubMed  Google Scholar 

  17. Hudgens B (2007) Quantifying spatial correlations in extinction risk for an aphid metapopulation. Popul Ecol 49:63–73. https://doi.org/10.1007/s10144-006-0017-1

    Article  Google Scholar 

  18. Hudson PJ, Cattadori IM (1999) The Moran effect: a cause of population synchrony. Trends Ecol Evol 14:1–2. https://doi.org/10.1016/S0169-5347(98)01498-0

    CAS  Article  PubMed  Google Scholar 

  19. Johnson MP (2005) Is there confusion over what is meant by “open population”? Hydrobiologia 544:333–338. https://doi.org/10.1007/s10750-005-1698-8

    Article  Google Scholar 

  20. Kendall BE, Bjørnstad ON, Bascompte J, Keitt TH, Fagan WF (2000) Dispersal, environmental correlation, and spatial synchrony in population dynamics. Am Nat 155:628–636. https://doi.org/10.1086/303350

    Article  PubMed  Google Scholar 

  21. Kinlan BP, Gaines SD (2003) Propagule dispersal in marine and terrestrial environments: a community perspective. Ecology 84:2007–2020. https://doi.org/10.1890/01-0622

    Article  Google Scholar 

  22. Koelle K, Vandermeer J (2005) Dispersal-induced desynchronization: from metapopulations to metacommunities. Ecol Lett 8:167–175. https://doi.org/10.1111/j.1461-0248.2004.00703.x

    Article  Google Scholar 

  23. Koenig WD (1999) Spatial autocorrelation of ecological phenomena. Trends Ecol Evol 14:22–26. https://doi.org/10.1016/S0169-5347(98)01533-X

    CAS  Article  PubMed  Google Scholar 

  24. Krug J, Steele M (2013) Larval exposure to shared oceanography does not cause spatially correlated recruitment in kelp forest fishes. Mar Ecol Prog Ser 477:177–188. https://doi.org/10.3354/meps10144

    Article  Google Scholar 

  25. Leis J, Mccormick M (2002) The biology, behavior, and ecology of the pelagic, larval stage of coral reef fishes. In: Coral reef fishes: dynamics and diversity in a complex ecosystem, pp 171–199

    Google Scholar 

  26. Levin SA (1974) Dispersion and population interactions. Am Nat 108:207–228. https://doi.org/10.1086/282900

    Article  Google Scholar 

  27. Levins R (1969) Some demographic and genetic consequences of environmental heterogeneity for biological control. Bulletin of the Entomological Society of America 15:237–240. https://doi.org/10.1093/besa/15.3.237

    Article  Google Scholar 

  28. Liebhold A, Koenig WD, Bjørnstad ON (2004) Spatial synchrony in population dynamics. Annu Rev Ecol Evol Syst 35:467–490. https://doi.org/10.1146/annurev.ecolsys.34.011802.132516

    Article  Google Scholar 

  29. McCann K, Hastings A, Huxel GR (1998) Weak trophic interactions and the balance of nature. Nature 395:794–798. https://doi.org/10.1038/27427

    CAS  Article  Google Scholar 

  30. Moran PAP (1953) The statistical analysis of the Canadian Lynx cycle. Aust J Zool 1:291–298. https://doi.org/10.1071/zo9530291

    Article  Google Scholar 

  31. Mouquet N, Loreau M (2003) Community patterns in source-sink metacommunities. Am Nat 162:544–557. https://doi.org/10.1086/378857

    Article  PubMed  Google Scholar 

  32. Post E, Forchhammer MC (2002) Synchronization of animal population dynamics by large-scale climate. Nature 420:168–171. https://doi.org/10.1038/nature01064

    CAS  Article  PubMed  Google Scholar 

  33. Pulliam HR (1988) Sources, sinks, and population regulation. Am Nat 132:652–661. https://doi.org/10.1086/284880

    Article  Google Scholar 

  34. Ranta E, Kaitala V, Lundberg P (1997) The spatial dimension in population fluctuations. Science 278:1621–1623. https://doi.org/10.1126/science.278.5343.1621

    CAS  Article  PubMed  Google Scholar 

  35. Roughgarden J, Gaines S, Possingham H (1988) Recruitment dynamics in complex life cycles. Science 241:1460–1466. https://doi.org/10.1126/science.11538249

    CAS  Article  PubMed  Google Scholar 

  36. Simonis JL (2012) Demographic stochasticity reduces the synchronizing effect of dispersal in predator–prey metapopulations. Ecology 93:1517–1524. https://doi.org/10.1890/11-0460.1

    Article  PubMed  Google Scholar 

  37. Tedesco PA, Hugueny B, Paugy D, Fermon Y (2004) Spatial synchrony in population dynamics of west African fishes: a demonstration of an intraspecific and interspecific Moran effect. J Anim Ecol 73:693–705. https://doi.org/10.1111/j.0021-8790.2004.00843.x

    Article  Google Scholar 

  38. Vandermeer J (2004) Coupled oscillations in food webs: balancing competition and mutualism in simple ecological models. Am Nat 163:857–867. https://doi.org/10.1086/420776

    Article  PubMed  Google Scholar 

  39. Vasseur DA (2007) Environmental colour intensifies the Moran effect when population dynamics are spatially heterogeneous. Oikos 116:1726–1736. https://doi.org/10.1111/j.0030-1299.2007.16101.x

    Article  Google Scholar 

  40. Vasseur DA, Fox JW (2007) Environmental fluctuations can stabilize food web dynamics by increasing synchrony. Ecol Lett 10:1066–1074. https://doi.org/10.1111/j.1461-0248.2007.01099.x

    Article  PubMed  Google Scholar 

  41. Vasseur DA, Fox JW (2009) Phase-locking and environmental fluctuations generate synchrony in a predator–prey community. Nature 460:1007–1010. https://doi.org/10.1038/nature08208

    CAS  Article  PubMed  Google Scholar 

  42. White JW (2007) Spatially correlated recruitment of a marine predator and its prey shapes the large-scale pattern of density-dependent prey mortality. Ecol Lett 10:1054–1065. https://doi.org/10.1111/j.1461-0248.2007.01098.x

    Article  PubMed  Google Scholar 

  43. White JW, Samhouri JF (2011) Oceanographic coupling across three trophic levels shapes source–sink dynamics in marine metacommunities. Oikos 120:1151–1164. https://doi.org/10.1111/j.1600-0706.2010.19226.x

    Article  Google Scholar 

  44. Zar JH (1999) Biostatistical analysis. Prentice Hall, Upper Saddle River

    Google Scholar 

Download references

Funding

This research was supported by grants from the National Science Foundation (CCF-1442728, OCE-1458150).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Diana L. Townsend.

Electronic supplementary material

ESM 1

(DOCX 84400 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Townsend, D.L., Gouhier, T.C. Spatial and interspecific differences in recruitment decouple synchrony and stability in trophic metacommunities. Theor Ecol 12, 319–327 (2019). https://doi.org/10.1007/s12080-018-0397-9

Download citation

Keywords

  • Metacommunity
  • Stability
  • Synchrony
  • Keystone food web
  • Dispersal