Skip to main content

Advertisement

Log in

Dispersal traits interact with dynamic connectivity to affect metapopulation growth and stability

  • ORIGINAL PAPER
  • Published:
Theoretical Ecology Aims and scope Submit manuscript

Abstract

Many marine benthic species undergo a pelagic larval stage during which larvae are transported by ocean currents over a broad range of spatial and temporal scales. Although metapopulation theory predicts how stochastic dispersal can alter the stability of metapopulations, little is known about how dispersal-related traits such as spawning time and larval duration interact with spatiotemporal connectivity to affect metapopulation growth and stability. We used stochastic models and stage-structured metapopulation dynamics to study the interacting effects of ocean currents and dispersal traits on regional growth and stability. We derived stochastic metapopulation growth and stability, which predict the strong impact of local density regulation on the response of metapopulation to dynamic connectivity: temporal variance, positive (negative) covariance, and negative (positive) autocorrelation in connectivity deflate (inflate) density-independent growth. Yet, stability decreases (increases) with temporal variance and positive (negative) covariance of connectivity. We applied our derived metrics to simulated connectivity along the coast of British Colombia (Canada) over a range of spawning time (ST) and pelagic larval duration (PLD). Our analysis shows strong interactions between statistical components of connectivity, dispersal-related traits, and metapopulation growth and stability. The non-monotonic response of metapopulation stability to PLD was driven by mean of connectivity over short PLDs (< 36 days), with a decrease in mean connectivity and stability with PLD. Over longer PLDs, temporal variance in connectivity had a dominant effect, with both a decrease in temporal variance of connectivity and an increase stability with PLDs > 36 days. We therefore use a trait-based framework and partitioning the relative importance of spatial and temporal components of stochastic marine dispersal, to inform species response through climate-induced changes in larval transport and in dispersal-related traits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Andersson H, Britton T (2000) Stochastic epidemics in dynamic populations: quasi-stationarity and extinction. J Math Biol 41(6):559–580

    Article  Google Scholar 

  • Andrello M, Jacobi MN, Manel S, Thuiller W, Mouillot D (2015) Extending networks of protected areas to optimize connectivity and population growth rate. Ecography 38(3):273–282

    Article  Google Scholar 

  • Andrello M, Mouillot D, Somot S, Thuiller W, Manel S (2015) Additive effects of climate change on connectivity between marine protected areas and larval supply to fished areas. Divers Distrib 21(2):139–150

    Article  Google Scholar 

  • Berglund M, Nilsson Jacobi M, Jonsson PR (2012) Optimal selection of marine protected areas based on connectivity and habitat quality. Ecol Model 240:105–112

    Article  Google Scholar 

  • Berkley HA, Kendall BE, Mitarai S, Siegel DA (2010) Turbulent dispersal promotes species coexistence. Ecol Lett 13(3):360–371

    Article  PubMed  PubMed Central  Google Scholar 

  • Blasius B, Huppert A, Stone L (1999) Complex dynamics and phase synchronization in spatially extended ecological systems. Nature 399(6734):354–359

    Article  CAS  PubMed  Google Scholar 

  • Bohonak AJ (1999) Dispersal, gene flow, and population structure. Quarterly Rev Biol 74(1):21–45

    Article  CAS  Google Scholar 

  • Botsford L, Moloney C, Hastings A, Largier J, Powell T, Higgins K, Quinn J (1994) The influence of spatially and temporally varying oceanographic conditions on meroplanktonic metapopulations. Deep Sea Research Part II: Topical Studies in Oceanography 41(1):107–145

    Article  Google Scholar 

  • Branch G (1984) Competition between marine organisms: ecological and evolutionary implications. Oceanogr Mar Biol Annu Rev 22:429–593

    Google Scholar 

  • Burt J, Akins P, Latham E, Beck M, Salomon A, Ban N (2014) Marine protected area network design features that support resilient human-ocean systems–applications for British Columbia, Canada, Technical report

  • Cai W, Santoso A, Wang G, Yeh S-W, An S-I, Cobb KM, Collins M, Guilyardi E, Jin F-F, Kug J-S et al (2015) Enso and greenhouse warming. Nat Clim Chang 5(9):849

    Article  Google Scholar 

  • Caley M, Carr M, Hixon M, Hughes T, Jones G, Menge B (1996) Recruitment and the local dynamics of open marine populations. Annu Rev Ecol Syst 27(1):477–500

    Article  Google Scholar 

  • Castorani MC, Reed DC, Raimondi PT, Alberto F, Bell TW, Cavanaugh KC, Siegel DA, Simons RD (2017) Fluctuations in population fecundity drive variation in demographic connectivity and metapopulation dynamics. In: Proceedings of the Royal Society B, vol 284. The Royal Society, pp 2016–2086

  • Cowen RK, Sponaugle S (2009) Larval dispersal and marine population connectivity. Annual Review of Marine Science 1:443–466

    Article  PubMed  Google Scholar 

  • Cushing D (1990) Plankton production and year-class strength in fish populations: an update of the match/mismatch hypothesis. In: Advances in marine biology, vol 26, Elsevier, pp 249–293

  • Doak DF, Morris WF, Pfister C, Kendall BE, Bruna EM (2005) Correctly estimating how environmental stochasticity influences fitness and population growth. The American Naturalist 166(1):E14–E21

    Article  PubMed  Google Scholar 

  • Eckert GL (2003) Effects of the planktonic period on marine population fluctuations. Ecol 84(2):372–383

    Article  Google Scholar 

  • Eger AM, Curtis JM, Fortin M-J, Côté IM, Guichard F (2016) Transferability and scalability of species distribution models: a test with sedentary marine invertebrates. Can J Fish Aquat Sci 74(5):766–778

    Article  Google Scholar 

  • Ethier SN, Kurtz TG (2009) Markov processes: characterization and convergence, vol 282. Wiley, New York

    Google Scholar 

  • Foreman MGG, Crawford WR, Cherniawsky JY, Galbraith J (2008) Dynamic ocean topography for the northeast pacific and its continental margins. Geophys Res Lett 35:L22606

    Article  Google Scholar 

  • Gerber LR, Mancha-Cisneros MDM, O’connor MI, Selig ER (2014) Climate change impacts on connectivity in the ocean: Implications for conservation. Ecosphere 5(3):1–18

    Article  Google Scholar 

  • Gonzalez A, Holt RD (2002) The inflationary effects of environmental fluctuations in source–sink systems. Proc Natl Acad Sci 99(23):14872–14877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guichard F, Levin SA, Hastings A, Siegel D (2004) Toward a dynamic metacommunity approach to marine reserve theory. Bioscience 54(11):1003–1011

    Article  Google Scholar 

  • Hanski I (1999) Habitat connectivity, habitat continuity, and metapopulations in dynamic landscapes. Oikos 87(2):209–219

    Article  Google Scholar 

  • Harley CD, Randall Hughes A, Hultgren KM, Miner BG, Sorte CJ, Thornber CS, Rodriguez LF, Tomanek L, Williams SL (2006) The impacts of climate change in coastal marine systems. Ecol Lett 9 (2):228–241

    Article  PubMed  Google Scholar 

  • Hastings A, Botsford LW (2006) Persistence of spatial populations depends on returning home. Proc Natl Acad Sci 103(15):6067–6072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holt RD (1990) The microevolutionary consequences of climate change. Trends Ecol Evol 5(9):311–315

    Article  CAS  PubMed  Google Scholar 

  • Hu D, Wu L, Cai W, Gupta AS, Ganachaud A, Qiu B, Gordon AL, Lin X, Chen Z, Hu S et al (2015) Pacific western boundary currents and their roles in climate. Nature 522(7556):299–308

    Article  CAS  PubMed  Google Scholar 

  • Hunt HL, Scheibling RE (1997) Role of early post-settlement mortality in recruitment of benthic marine invertebrates. Mar Ecol Prog Ser 155:269–301

    Article  Google Scholar 

  • Jacobi MN, André C, Döös K, Jonsson PR (2012) Identification of subpopulations from connectivity matrices. Ecography 35(11):1004–1016

    Article  Google Scholar 

  • Jones GP (1987) Competitive interactions among adults and juveniles in a coral reef fish. Ecol 68(5):1534–1547

    Article  Google Scholar 

  • Kendall BE, Bjørnstad ON, Bascompte J, Keitt TH, Fagan WF (2000) Dispersal, environmental correlation, and spatial synchrony in population dynamics. The American Naturalist 155(5):628–636

    Article  PubMed  Google Scholar 

  • Kerr KA, Christy JH, Joly-Lopez Z, Luque J, Collin R, Guichard F (2014) Reproducing on time when temperature varies: shifts in the timing of courtship by fiddler crabs. PloS One 9(5):e97593

    Article  PubMed  PubMed Central  Google Scholar 

  • Knapp S, Schweiger O, Kraberg A, Asmus H, Asmus R, Brey T, Frickenhaus S, Gutt J, Kühn I, Liess M et al (2017) Do drivers of biodiversity change differ in importance across marine and terrestrial systems or is it just different research communities’ perspectives? Sci Total Environ 574:191–203

    Article  CAS  PubMed  Google Scholar 

  • Kool JT, Moilanen A, Treml EA (2013) Population connectivity: recent advances and new perspectives. Landsc Ecol 28(2):165–185

    Article  Google Scholar 

  • Kurtz TG (1978) Strong approximation theorems for density dependent Markov chains. Stoch Process Appl 6(3):223–240

    Article  Google Scholar 

  • Kurtz TG (1981) Approximation of population processes, vol 36. SIAM

  • Lande R, Engen S, Sæther B-E (1999) Spatial scale of population synchrony: environmental correlation versus dispersal and density regulation. The American Naturalist 154(3):271–281

    Article  PubMed  Google Scholar 

  • Le Corre N, Johnson LE, Smith GK, Guichard F (2015) Patterns and scales of connectivity: temporal stability and variation within a marine metapopulation. Ecology 96(8):2245–2256

    Article  Google Scholar 

  • Lett C, Ayata S-D, Huret M, Irisson J-O (2010) Biophysical modelling to investigate the effects of climate change on marine population dispersal and connectivity. Prog Oceanogr 87(1):106–113

    Article  Google Scholar 

  • Lowe WH, Allendorf FW (2010) What can genetics tell us about population connectivity? Mol Ecol 19 (15):3038–3051

    Article  PubMed  Google Scholar 

  • Lowe WH, McPeek MA (2014) Is dispersal neutral? Trends in Ecology & Evolution 29(8):444–450

    Article  Google Scholar 

  • Masson D, Fine I (2012) Modeling seasonal to interannual ocean variability of Coastal British Columbia. J Geophys Res Oceans 117:C10

    Article  Google Scholar 

  • Merriam G (1984) Connectivity: a fundamental ecological characteristic of landscape pattern. In: Brandt J, Agger P (eds) Methodology in landscape ecological research and planning: proceedings, 1st seminar, International Association of Landscape Ecology, Roskilde, Denmark, Oct 15-19, 1984

  • Mitarai S, Siegel DA, Watson JR, Dong C, McWilliams JC (2009) Quantifying connectivity in the coastal ocean with application to the Southern California bight. J Geophys Res Oceans 114:C10026

    Article  Google Scholar 

  • Moran P (1953) The statistical analysis of the canadian lynx cycle. Aust J Zool 1(3):291–298

    Article  Google Scholar 

  • Munday PL, Jones GP, Pratchett MS, Williams AJ (2008) Climate change and the future for coral reef fishes. Fish Fish 9(3):261–285

    Article  Google Scholar 

  • Munday P, Leis J, Lough J, Paris C, Kingsford M, Berumen M, Lambrechts J (2009) Climate change and coral reef connectivity. Coral Reefs 28(2):379–395

    Article  Google Scholar 

  • Nathan R, Getz WM, Revilla E, Holyoak M, Kadmon R, Saltz D, Smouse PE (2008) A Movement ecology paradigm for unifying organismal movement research. Proc Natl Acad Sci 105(49):19052–19059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Newman M (2013) An empirical benchmark for decadal forecasts of global surface temperature anomalies. J Clim 26(14):5260– 5269

    Article  Google Scholar 

  • North EW, Adams EE, Schlag Z, Sherwood CR, He R, Hyun KH, Socolofsky SA (2011) Simulating oil droplet dispersal from the deepwater horizon spill with a lagrangian approach. Geophys Monogr Ser 195:217–226

    CAS  Google Scholar 

  • O’Connor MI, Bruno JF, Gaines SD, Halpern BS, Lester SE, Kinlan BP, Weiss JM (2007) Temperature control of larval dispersal and the implications for marine ecology, evolution, and conservation. Proc Natl Acad Sci 104(4):1266–1271

    Article  PubMed  PubMed Central  Google Scholar 

  • Olivieri I, Gouyon P-H (1997) Evolution of migration rate and other traits: the metapopulation effect. In: Metapopulation biology. Elsevier, pp 293–323

  • Parmesan C, Yohe G (2003) A Globally coherent fingerprint of climate change impacts across natural systems. Nature 421(6918):37– 42

    Article  CAS  PubMed  Google Scholar 

  • Pimm SL, Redfearn A (1988) The variability of population densities. Nature 334(6183):613

    Article  Google Scholar 

  • Pringle CM (2001) Hydrologic connectivity and the management of biological reserves: a global perspective. Ecol Appl 11(4):981–998

    Article  Google Scholar 

  • Ranta E, Kaitala V, Lundberg P (1997) The spatial dimension in population fluctuations. Science 278 (5343):1621–1623

    Article  CAS  PubMed  Google Scholar 

  • Ripa J (2000) Analysing the moran effect and dispersal: their significance and interaction in synchronous population dynamics. Oikos 89(1):175–187

    Article  Google Scholar 

  • Roberts CM (1997) Connectivity and management of caribbean coral reefs. Science 278(5342):1454–1457

    Article  CAS  PubMed  Google Scholar 

  • Roy M, Holt RD, Barfield M (2005) Temporal autocorrelation can enhance the persistence and abundance of metapopulations comprised of coupled sinks. The American Naturalist 166(2):246–261

    Article  PubMed  Google Scholar 

  • Rubenstein DR, Hobson KA (2004) From birds to butterflies: animal movement patterns and stable isotopes. Trends in Ecology & Evolution 19(5):256–263

    Article  Google Scholar 

  • Saura S, Bodin Ö, Fortin M-J (2014) Editor’s choice: Stepping stones are crucial for species’ long-distance dispersal and range expansion through habitat networks. J Appl Ecol 51(1):171–182

    Article  Google Scholar 

  • Schreiber SJ (2010) Interactive effects of temporal correlations, spatial heterogeneity and dispersal on population persistence. Proc R Soc Lond B Biol Sci 277(1689):1907–1914

    Article  Google Scholar 

  • Selkoe KA, Watson JR, White C, Horin TB, Iacchei M, Mitarai S, Siegel DA, Gaines SD, Toonen RJ (2010) Taking the chaos out of genetic patchiness: seascape genetics reveals ecological and oceanographic drivers of genetic patterns in three temperate reef species. Mol Ecol 19(17):3708–3726

    Article  PubMed  Google Scholar 

  • Siegel D, Mitarai S, Costello C, Gaines S, Kendall B, Warner R, Winters K (2008) The stochastic nature of larval connectivity among nearshore marine populations. Proc Natl Acad Sci 105(26):8974–8979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Snyder RE, Paris CB, Vaz AC (2014) How much do marine connectivity fluctuations matter? The American Naturalist 184(4):523–530

    Article  PubMed  Google Scholar 

  • Steele JH (1985) A comparison of terrestrial and marine ecological systems. Nature 313(6001):355–358

    Article  Google Scholar 

  • Tuljapurkar S, Orzack SH (1980a) Population dynamics in variable environments i. long-run growth rates and extinction. Theor Popul Biol 18(3):314–342

    Article  Google Scholar 

  • Tuljapurkar S, Orzack SH (1980b) Population dynamics in variable environments i. long-run growth rates and extinction. Theor Popul Biol 18(3):314–342

    Article  Google Scholar 

  • Underwood A, Denley E, Moran M (1983) Experimental analyses of the structure and dynamics of mid-shore rocky intertidal communities in new south wales. Oecologia 56(2-3):202–219

    Article  CAS  PubMed  Google Scholar 

  • Vasseur DA, Fox JW (2009) Phase-locking and environmental fluctuations generate synchrony in a predator–prey community. Nature 460(7258):1007–1010

    Article  CAS  PubMed  Google Scholar 

  • Watson JR, Kendall BE, Siegel DA, Mitarai S (2012) Changing seascapes, stochastic connectivity, and marine metapopulation dynamics. The American Naturalist 180(1):99–112

    Article  PubMed  Google Scholar 

  • White JW, Botsford LW, Baskett ML, Barnett LA, Barr RJ, Hastings A (2011) Linking models with monitoring data for assessing performance of no-take marine reserves. Front Ecol Environ 9(7):390–399

    Article  Google Scholar 

  • White JW, Morgan SG, Fisher JL (2014) Planktonic larval mortality rates are lower than widely expected. Ecol 95(12):3344–3353

    Article  Google Scholar 

  • Williams PD, Hastings A (2013) Stochastic dispersal and population persistence in marine organisms. The American Naturalist 182(2):271–282

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the anonymous reviewers for investing some of their time to read the manuscript and for their insightful comments and suggestions that helped improve the clarity and quality of this article.

Funding

Funding was provided by Natural Sciences and Engineering Research Council of Canada (NSERC), Strategic project. Join grant PIs: F.G. & M-J.F.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ridouan Bani.

Appendices

Appendix A: Analysis of density- independent metapopulation growth]

$$ \frac{dn_{i}}{dt}=r_{i} n_{i}+\sum\limits_{j \neq i}^{m} I_{ji}(t)n_{j}, $$
(10)

The system of equations can be formulated in matrix form:

$$ \frac{dN}{dt}=A(t)N, $$
(11)

where N(t) = (n1(t),..., nm(t))T and A(t) = (ai, j)(i, j) is the metapopulation projection matrix at time t, such that

$$\begin{array}{@{}rcl@{}} &&a_{ii}(t)=r_{i} i=i,\\ &&a_{ij}(t)=I_{ij}(t) i\neq j, \end{array} $$
(12)

The total abundance of the metapopulation is \(N(t)={\sum }_{i = 1}^{m} n_{i}(t)\). In our model, the only fluctuating inputs are connectivity parameters, using a time incrementation large enough to assume that dynamics of continuous model in matrix form:

$$ \frac{dN}{dt}=A(t)N, $$
(13)

similar to discreet model

$$ N(t + 1)=(A(t)+I_{m})N(t), $$
(14)

where Im is the identity matrix. If we let

$$ B(t)=A(t)+I_{m}, $$
(15)

and assuming that:

$$ \exists! \xi(t) \in \mathbb{R}^{m^{2}} / \left\{B(t)= \bar B +\xi(t), \mathbb{E}[\xi(t)]= 0; \forall t \in \mathbb{R^{+}}\right\}, $$
(16)

Assuming that average matrix \(\bar B\) is a non-negative and irreducible and has m linearly independent left and right eigenvectors V i and Ui and corresponding eigenvalues λi (i ∈{1,..., m} and λd = λ1 > λ2 > ... > λm), Tuljapurkar and Orzack (1980a, b) showed that the long-term stochastic growth follows a log normal distribution with a mean of λs and variance σ2:

$$ \log \lambda_{s} \simeq \log \lambda_{d} - \frac{\tau^{2}}{2{\lambda_{d}^{2}}}+\frac{{\Theta}_{1}}{{\lambda_{d}^{2}}}, $$
(17)
$$ \log \sigma^{2} =\frac{\tau^{2}}{{\lambda_{d}^{2}}} +\frac{2 {\Theta}_{2}}{{\lambda_{d}^{2}}}, $$
(18)

where

$$\begin{array}{@{}rcl@{}} \log(\lambda_{s})\!&=&\!\lim\limits_{t \rightarrow \infty} \frac{1}{t} \log \left\|\frac{N(t)}{N(0)}\right\| \\ \!&=&\! \lim\limits_{t \rightarrow \infty}\frac{1}{t} \log \left\|(A(t-1)+I_{m})\times ...\times (A(0)+I_{m}) \right\| \\ \!&=&\! \lim\limits_{t \rightarrow \infty}\frac{1}{t} \log \left\|B(t-1)\times ...\times B(0) \right\|, \end{array} $$
(19)

and

$$ \tau^{2}{}={}\frac{{\sum}_{k\neq l}{\sum}_{i\neq j} V_{1}(k)V_{1}(i)U_{1}(l)U_{1}(j) Cov(I_{kl}(t),I_{ij}(t))}{||V_{1} U_{1}||^{2}}, $$
(20)
$$ {\Theta}_{1}=\frac{{\sum}_{k\neq l}{\sum}_{i\neq j} {\sum}_{T = 1}^{\infty} {\sum}_{s = 1}^{m} V_{1}(k)U_{1}(l) \frac{\lambda_{s}}{\lambda_{d}}^{T-1}\frac{V_{s}(i)U_{s}(j) \text{Cov}(I_{kl}(t-T),I_{ij}(t))}{||V_{s}U_{s}||}}{||V_{1} U_{1}||} $$
(21)
$$ {\Theta}_{2}=\frac{{\sum}_{k\neq l}{\sum}_{i\neq j} {\sum}_{T = 1}^{\infty}V_{1}(k)V_{1}(i)U_{1}(l)U_{1}(j) \text{Cov}(I_{kl}(t-T),I_{ij}(t))}{||V_{1} U_{1}||^{2}} $$
(22)
$$ \tau^{2}=\sum\limits_{k\neq l}\sum\limits_{i\neq j} Z_{1kl}Z_{1ij}\text{Cov}(I_{kl}(t),I_{ij}(t)), $$
(23)
$$\begin{array}{@{}rcl@{}} {\Theta}_{1}&=&\sum\limits_{k\neq l}\sum\limits_{i\neq j}\sum\limits_{T = 1}^{\infty}\sum\limits_{s = 2}^{m} \left( \frac{\lambda_{s}}{\lambda_{d}}\right)^{T-1}Z_{1kl}Z_{sij}\text{Cov}\\&&\times\left( I_{kl}(t),I_{ij}(t-T)\right), \end{array} $$
(24)
$$ {\Theta}_{2}=\sum\limits_{k\neq l}\sum\limits_{i\neq j} \sum\limits_{T = 1}^{\infty}Z_{1kl}Z_{1ij}\text{Cov}\left( I_{kl}(t),I_{ij}(t-T)\right) $$
(25)

where \(Z_{hij}=\frac {\partial \lambda _{h}}{\partial I_{ij}}=v_{hi} u_{hj}\), h ∈ 1,..., n, vhi (uhj) are the i th (j th) component of the left (right) eigenvector V h (Uh) corresponding the h th eigenvalue (λd = λ1 > λ2 > ... > λn). For a metapopulation fragmented over m patches, there are m(m − 1) possible Var(Iij(t)), and \(\frac {(m(m-1)(m(m-1)-1))}{2}\) possible Cov(Iij(t), Ikl(t)) terms. While Var(Iij(t)) ≥ 0, the covariance Cov(Iij(t), Ikl(t)) can be positive, negative, or 0.

Appendix B: Analysis of density-dependent stochastic growth

During the time interval [t, t + Δt], the probability of an increase by one individual larvae at patch i coming from patch j is:

$$\begin{array}{@{}rcl@{}} &&P((n_{1},...,n_{i}+ 1,...,n_{m})|(n_{1},...,n_{i},...,n_{m}))\\ &&=I_{ji}n_{j}{\Delta} t+O({\Delta}), \end{array} $$
(26)

However, the individual larvae can be dispersing from all other patches:

$$\begin{array}{@{}rcl@{}} &&P((n_{1},...,n_{i}+ 1,...,n_{m})|(n_{1},...,n_{i},...,n_{m}))\\ &&=\sum\limits_{j\neq i}^{m}I_{ji}n_{j}{\Delta} t+O({\Delta}), \end{array} $$
(27)

During a time interval [t, t + Δt], change in stochastic process is given by ΔXt = (Δn1t,...,Δnmt). Each component of ΔXt is the sum of its conditional expected value and a conditional centered random increment defined in (Table 2), where the conditioning is on X(t):

$$\begin{array}{@{}rcl@{}} {\Delta} n_{it}&=&E[{\Delta} n_{it}]+({\Delta} n_{it}-E[{\Delta} n_{it}])\\ &=&E[{\Delta} n_{it}]+\sum\limits_{j\neq i}^{m} {\Delta} T_{ji} -\sum\limits_{j\neq i}^{m} {\Delta} E_{ij} +{\Delta} R_{i}-{\Delta} D_{i}, \end{array} $$

For example, the increment ΔTji represents the j th conditionally centered locally Poisson increment \(I_{ji} n_{j} \left (1-\frac {n_{i}}{K_{i}} \right ){\Delta } t\) that is related to the change in the i th components of X(t).

For sufficiently large initial total density N(t0), we can replace centered Poisson increments ΔTji by \(G^{t}_{ji} {\Delta } W_{ji}\), for i, j = 1, 2,..., m, where each \(G^{t}_{ji}\sqrt {{\Delta } t}\) is the approximate conditional standard deviation of the increment of respective transition and each Wij is a standard Wiener process, that is, \({\Delta } W_{ij} \sim \mathcal {N}(0,{\Delta } t)\) (Kurtz 1978), and \(G_{ij}^{t}= \sqrt {I_{ji}\frac {n_{j}}{N}(1-\frac {n_{i}}{K_{i}})}\) or \(G_{ji}^{t}= \sqrt {I_{ji}\frac {n_{j}}{N}(1-\frac {n_{i}}{K_{i}})}\). The Markov process x(t) = (x1(t),..., xm(t)) is approximated by the m-dimensional diffusion satisfying the system of stochastic differential equations (Kurtz 1978, 1981) with the initial distribution given by:

$$ dx_{it}=\left( \left( r_{i}x_{it}+\sum\limits_{j\neq i}I_{ji} x_{jt}\right)\right.\left( 1-\frac{x_{i}}{k_{i}}\right)dt + \sum\limits_{j\neq i} G^{t}_{ji} dW^{t}_{ji} $$
(28)

Ethier and Kurtz (2009) showed that the normalized diffusion process \(\sqrt {N }(x_{1t}-k_{1},...,x_{mt}-k_{m})\) is approximated near the stable equilibrium (0,..., 0) by the diffusion process:

$$ dV_{t}=J_{0} V_{t}+G^{t} dW^{t}, $$
(29)

where V t = (x1tk1,..., xmtkm)T, with local drift J0 the Jacobian matrix of the scaled deterministic system (28) at equilibrium (k1,..., km)), and the diffusion matrix \(G^{t}=(G_{ij}^{t})_{(i,j)}\).

$$ \left( \begin{array}{c} dv_{1}\\ .\\ .\\ .\\ dv_{m} \end{array}\right) =J_{0}\left( \begin{array}{c} v_{1}\\ .\\ .\\ .\\ v_{m} \end{array}\right) + G^{t}\left( \begin{array}{c} dW_{21}\\ .\\ .\\ .\\ dW_{m1}\\ dW_{12}\\ .\\ .\\ .\\ dW_{m2}\\ .\\ .\\ .\end{array}\right) $$
(30)

where

$$ J_{0}=\left( \begin{array}{cccccc} - r_{1}-{\sum}_{j\neq 1}\bar I_{j1} \frac{k_{j}}{k_{1}} & 0&.&.&.&0 \\ 0&.&.&.&.&0\\ .&.&.&.&.&.\\ .&.&.&.&.&.\\ .&.&.&.&.&.\\ 0&.&.&.&0& -r_{m}-{\sum}_{j\neq m}\bar I_{jm} \frac{k_{j}}{k_{m}} \end{array}\right) $$
(31)

and

$$\begin{array}{@{}rcl@{}} G^t &=& \left( \begin{array}{ccccccccccccccc} G^t_{21} &G^t_{31}& .&.&G^t_{m1}&-G^t_{12}&-G^t_{13}&.&. &-G^t_{1m}&{\Delta} R_1&-{\Delta} D_1&0\\ -G^t_{21}&0&.&.&0 & G^t_{12} &0 &.&.&.&.&.&.\\ 0&-G^t_{31}&0&.&.& 0&G^t_{13}&0&.&.&.&.&.\\ .&.&-G^t_{41}&.&.& .&. &G^t_{41}&.&.&.&.&.\\ .&.&.&.&.& .&. &.&.&.&.&.&.\\ .&.&.&.&.&-G^t_{m1}&. &.&.&G^t_{1m}&.&.&. \end{array}\right.\\ &&\left.\begin{array}{ccccccccccccccccccc} .&.&.&.&.&.&.&.&.&.&.&.&.&.&.&.&.&.&0\\ G^t_{32}&G^t_{42}&.&.&.&G^t_{m2}&-G^t_{21}&-G^t_{23}&.&.&.&-G^t_{2m}&{\Delta} R_2&-~{\Delta} D_2&0&.&.&.&.\\ -G^t_{32}&0&.&.&.&.&.&G^t_{23}&.&.&. &.&.&.&.&.&.&.&.\\ 0&-G^t_{42}&0&.&.&.&.&.& G^t_{24}&. &.&.&.&.&.&.&. &.&.\\ .&.&.&.&.&.&.&.& .&. &.&.&.&.&.&.&. &0&0\\ .&.&.&.&.&.&.&-G^t_{m2}& .&. &.&G^t_{2m}&.&.&..&. &{\Delta} R_m&-{\Delta} D_{m} \end{array}\right) \end{array} $$
(32)

The stationary distribution of this OU process is Gaussian with mean zero ((0,.., 0)) and covariance \(S=(\sigma ^{2}_{ij})_{(i,j)\in \{1,...,m\}^{2}}\) given by the relation (Andersson and Britton 2000)

$$J_{0} S +S {J_{0}^{T}} =-C, $$

The matrix C = (cij)(i, j) elements are obtained from matrix Gt.

$$\begin{array}{@{}rcl@{}} c_{ii}(t){}&=&{}\sum\limits_{q\neq i}^{m}\sum\limits_{p\neq i}^{m} k_{i}k_{q}Cov(I_{qi}(t),I_{ip}(t))+\epsilon {\kern15pt} i=i \end{array} $$
(33)
$$\begin{array}{@{}rcl@{}} c_{ij}(t)&=&k_{i}k_{j}Cov(I_{ij}(t),I_{ji}(t))+\epsilon \qquad \qquad {\kern6pt} i\neq j \end{array} $$
(34)

where the 𝜖 is of order \(O(min\{{k^{2}_{i}}, k\in (1,...,n)\})\).

Appendix C: Connectivity statistical mean, variance, covariance, and auto-correlations

Fig. 6
figure 6

The mean of mean connectivity distribution \(\{\mu (C_{ij}(t))\}_{(i,j)\in \{1,...,388\}^{2}}\) as a function of larval duration and spawning time

Fig. 7
figure 7

The mean of variance of connectivity distribution \(\{\sigma ^{2}(C_{ij}(t))\}_{(i,j)\in \{1,...,388\}^{2}}\) as a function of larval duration and spawning time

Fig. 8
figure 8

The mean of connectivity covariance distribution \(\{cov(C_{ij}(t),C_{kl}(t))\}_{(i,j,k,l)\in \{1,...,388\}^{4}}\) as a function of larval duration and spawning time

Fig. 9
figure 9

Temporal connectivity autocorrelation and how they vary with larval duration. The z -axis represent the mean of \(\{ cov(C_{ij}(t),C_{kl}(t-T))\}_{(i,j,k,l,T) \in \{1,...,388\}^{4} X \{1,...,9\}}\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bani, R., Fortin, MJ., Daigle, R.M. et al. Dispersal traits interact with dynamic connectivity to affect metapopulation growth and stability. Theor Ecol 12, 111–127 (2019). https://doi.org/10.1007/s12080-018-0393-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12080-018-0393-0

Keywords

Navigation