Skip to main content

Optimized timing of parasitoid release: a mathematical model for biological control of Drosophila suzukii

Abstract

We present a model for the population dynamics of the invasive fruit fly Drosophila suzukii and its pupal parasitoid Trichopria drosophilae. Seasonality of the environment is captured through a system of delay differential equations with variable delays. The model is used to explore optimal timing for releasing parasitoids in biological control programs. According to the results, releasing parasitoids is most effective between late spring and early summer when the host population begins to increase. A single parasitoid release event can be more efficient than multiple releases over a prolonged period, but multiple releases are more robust to suboptimal timing choices. The findings can be useful for optimizing parasitoid release and should be transferable for similar systems. More generally, the model is an example for stage-structured resource-consumer dynamics in a varying environment.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. Amiresmaeili N (2017) Developing frameworks for identifying the biological control agents of Drosophila suzukii in Lombardy Italy. PhD thesis, Universita degli studi di Milano

  2. Asplen MK, Anfora G, Biondi A, Choi DS, Chu D, Daane KM, Gibert P, Gutierrez AP, Hoelmer KA, Hutchison WD et al (2015) Invasion biology of spotted wing Drosophila (Drosophila suzukii): a global perspective and future priorities. J Pest Sci 88(3):469–494

    Article  Google Scholar 

  3. Atallah J, Teixeira L, Salazar R, Zaragoza G, Kopp A (2014) The making of a pest: the evolution of a fruit-penetrating ovipositor in Drosophila suzukii and related species. Proc R Soc Lond B Biol Sci 281(1781):20132,840

    Article  Google Scholar 

  4. Bolda MP, Goodhue RE, Zalom FG (2010) Spotted wing drosophila: potential economic impact of a newly established pest. Agricultural and Resource Economics Update 13(3):5–8

    Google Scholar 

  5. Calabria G, Máca J, Bächli G, Serra L, Pascual M (2012) First records of the potential pest species Drosophila suzukii (Diptera: Drosophilidae) in Europe. J Appl Entomol 136(1-2):139–147

    Article  Google Scholar 

  6. Chabert S, Allemand R, Poyet M, Eslin P, Gibert P (2012) Ability of European parasitoids (Hymenoptera) to control a new invasive Asiatic pest, Drosophila suzukii. Biol Control 63(1):40–47

    Article  Google Scholar 

  7. Cini A, Ioriatti C, Anfora G et al (2012) A review of the invasion of Drosophila suzukii in Europe and a draft research agenda for integrated pest management. Bulletin of Insectology 65(1):149–160

    Google Scholar 

  8. Cini A, Anfora G, Escudero-Colomar L, Grassi A, Santosuosso U, Seljak G, Papini A (2014) Tracking the invasion of the alien fruit pest Drosophila suzukii in Europe. J Pest Sci 87(4):559–566

    Article  Google Scholar 

  9. Crowder DW (2007) Impact of release rates on the effectiveness of augmentative biological control agents. J Insect Sci 7(1):15

    PubMed  PubMed Central  Google Scholar 

  10. Daane KM, Wang X-G, Biondi A, Miller B, Miller JC, Riedl H, Shearer PW, Guerrieri E, Giorgini M, Buffington M et al (2016) First exploration of parasitoids of Drosophila suzukii in South Korea as potential classical biological agents. J Pest Sci 89(3):823–835

    Article  Google Scholar 

  11. De Ros G, Anfora G, Grassi A, Ioriatti C (2013) The potential economic impact of Drosophila suzukii on small fruits production in Trentino (Italy). IOBC-WPRS Bull 91:317–321

    Google Scholar 

  12. Deprá M, Poppe JL, Schmitz HJ, De Toni DC, Valente VL (2014) The first records of the invasive pest Drosophila suzukii in the South American continent. J Pest Sci 87(3):379–383

    Article  Google Scholar 

  13. Elsensohn JE, Loeb GM (2018) Non-crop host sampling yields insights into small-scale population dynamics of drosophila suzukii (matsumura). Insects 9(1):5

    Article  Google Scholar 

  14. Emiljanowicz LM, Ryan GD, Langille A, Newman J (2014) Development, reproductive output and population growth of the fruit fly pest Drosophila suzukii (Diptera: Drosophilidae) on artificial diet. J Econ Entomol 107(4):1392–1398

    Article  Google Scholar 

  15. Ewing DA, Cobbold CA, Purse B, Nunn M, White SM (2016) Modelling the effect of temperature on the seasonal population dynamics of temperate mosquitoes. J Theor Biol 400:65–79

    CAS  Article  Google Scholar 

  16. Fraimout A, Debat V, Fellous S, Hufbauer RA, Foucaud J, Pudlo P, Marin JM, Price DK, Cattel J, Chen X et al (2017) Deciphering the routes of invasion of drosophila suzukii by means of ABC random forest. Mol Biol Evol 34(4):980

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Gabarra R, Riudavets J, Rodríguez GA, Pujade-Villar J, Arnó J (2015) Prospects for the biological control of Drosophila suzukii. Biocontrol 60(3):331–339

    Article  Google Scholar 

  18. Garay J, Sebestyén Z, Varga Z, Gámez M, Torres A, Belda JE, Cabello T (2015) A new multistage dynamic model for biological control exemplified by the host–parasitoid system Spodoptera exigua–Chelonus oculator. J Pest Sci 88(2):343–358

    Article  Google Scholar 

  19. Grassi A, Gottardello A, Dalton DT, Tait G, Rendon D, Ioriatti C, Gibeaut D, Rossi Stacconi MV, Walton VM (2017) Seasonal reproductive biology of drosophila suzukii (Diptera: Drosophilidae) in temperate climates. Environmental entomology

  20. Hamby KA, Bellamy DE, Chiu JC, Lee JC, Walton VM, Wiman NG, York RM, Biondi A (2016) Biotic and abiotic factors impacting development, behavior, phenology, and reproductive biology of Drosophila suzukii. J Pest Sci 89(3):605–619

    Article  Google Scholar 

  21. Hauser M (2011) A historic account of the invasion of Drosophila suzukii (Matsumura)(Diptera: Drosophilidae) in the continental United States, with remarks on their identification. Pest Manag Sci 67(11):1352–1357

    CAS  Article  Google Scholar 

  22. Haye T, Girod P, Cuthbertson A, Wang X, Daane K, Hoelmer K, Baroffio C, Zhang J, Desneux N (2016) Current SWD IPM tactics and their practical implementation in fruit crops across different regions around the world. J Pest Sci 89(3):643–651

    Article  Google Scholar 

  23. Kaçar G, Xg Wang, Stewart TJ, Daane KM (2015) Overwintering survival of Drosophila suzukii (Diptera: Drosophilidae) and the effect of food on adult survival in California’s San Joaquin Valley. Environ Entomol 45(4):763–771

    Article  Google Scholar 

  24. Karageorgi M, Bräcker L B, Lebreton S, Minervino C, Cavey M, Siju K, Kadow ICG, Gompel N, Prud’homme B (2017) Evolution of multiple sensory systems drives novel egg-laying behavior in the fruit pest Drosophila suzukii. Curr Biol 27(6):847–853

    CAS  Article  Google Scholar 

  25. Kenis M, Tonina L, Eschen R, van der Sluis B, Sancassani M, Mori N, Haye T, Helsen H (2016) Non-crop plants used as hosts by Drosophila suzukii. J Pest Sci 89(3):735–748

    Article  Google Scholar 

  26. Klick J, Yang W, Walton V, Dalton D, Hagler J, Dreves A, Lee J, Bruck D (2016) Distribution and activity of Drosophila suzukii in cultivated raspberry and surrounding vegetation. Chin J Appl Entomol 140 (1-2):37–46

    Article  Google Scholar 

  27. Knoll V, Ellenbroek T, Romeis J, Collatz J (2017) Seasonal and regional presence of hymenopteran parasitoids of Drosophila in Switzerland and their ability to parasitize the invasive Drosophila suzukii. Scientific reports 7:40,697

    CAS  Article  Google Scholar 

  28. Lee JC, Bruck DJ, Curry H, Edwards D, Haviland DR, Van Steenwyk RA, Yorgey BM (2011a) The susceptibility of small fruits and cherries to the spotted-wing drosophila, Drosophila suzukii. Pest Manag Sci 67 (11):1358–1367

    CAS  Article  Google Scholar 

  29. Lee JC, Bruck DJ, Dreves AJ, Ioriatti C, Vogt H, Baufeld P (2011b) In focus: spotted wing drosophila, Drosophila suzukii, across perspectives. Pest Manag Sci 67(11):1349–1351

    CAS  Article  Google Scholar 

  30. Mazzetto F, Marchetti E, Amiresmaeili N, Sacco D, Francati S, Jucker C, Dindo ML, Lupi D, Tavella L (2016) Drosophila parasitoids in northern Italy and their potential to attack the exotic pest Drosophila suzukii. J Pest Sci 89(3):837–850

    Article  Google Scholar 

  31. McCauley E, Nelson WA, Nisbet RM (2008) Small-amplitude cycles emerge from stage-structured interactions in Daphnia–algal systems. Nature 455(7217):1240–1243

    CAS  Article  Google Scholar 

  32. Miller B, Anfora G, Buffington M, Dalton DT, Miller JC, Wiman NG, Walton VM et al (2015) Seasonal occurrence of resident parasitoids associated with Drosophila suzukii in two small fruit production regions of Italy and the USA. Bulletin Of Insectology

  33. Mitsui H, Van Achterberg K, Nordlander G, Kimura MT (2007) Geographical distributions and host associations of larval parasitoids of frugivorous Drosophilidae in Japan. J Nat Hist 41(25-28):1731–1738

    Article  Google Scholar 

  34. Nelson WA, ON Bjørnstad, Yamanaka T (2013) Recurrent insect outbreaks caused by temperature-driven changes in system stability. Science 341(6147):796–799

    CAS  Article  Google Scholar 

  35. Nisbet R, Gurney W (1983) The systematic formulation of population models for insects with dynamically varying instar duration. Theor Popul Biol 23(1):114–135

    Article  Google Scholar 

  36. Poyet M, Le Roux V, Gibert P, Meirland A, Prévost G, Eslin P, Chabrerie O (2015) The wide potential trophic niche of the Asiatic fruit fly Drosophila suzukii: the key of its invasion success in temperate Europe? PloS One 10(11):e0142,785

    Article  Google Scholar 

  37. Rossi Stacconi M, Grassi A, Dalton D, Miller B, Ouantar M, Loni A, Ioriatti C, Walton V, Anfora G (2013) First field records of Pachycrepoideus vindemiae as a parasitoid of Drosophila suzukii in European and Oregon small fruit production areas. Entomologia 1(1):3

    Article  Google Scholar 

  38. Rossi Stacconi MV, Buffington M, Daane KM, Dalton DT, Grassi A, Kaçar G, Miller B, Miller JC, Baser N, Ioriatti C et al (2015) Host stage preference, efficacy and fecundity of parasitoids attacking Drosophila suzukii in newly invaded areas. Biol Control 84:28–35

    Article  Google Scholar 

  39. Rossi Stacconi MV, Kaur R, Mazzoni V, Ometto L, Grassi A, Gottardello A, Rota-Stabelli O, Anfora G (2016) Multiple lines of evidence for reproductive winter diapause in the invasive pest Drosophila suzukii. J Pest Sci 89(3):689–700

    Article  Google Scholar 

  40. Rossi Stacconi MV, Panel A, Baser N, Ioriatti C, Pantezzi T, Anfora G (2017) Comparative life history traits of indigenous Italian parasitoids of Drosophila suzukii and their effectiveness at different temperatures. Biological Control

  41. Rossi Stacconi MV, Amiresmaeili N, Biondi A, Carli C, Caruso S, Dindo ML, Francati S, Gottardello A, Grassi A, Lupi D et al (2018) Host location and dispersal ability of the cosmopolitan parasitoid trichopria drosophilae released to control the invasive spotted wing drosophila. Biol Control 117:188–196

    Article  Google Scholar 

  42. Roubos CR, Rodriguez-Saona C, Holdcraft R, Mason KS, Isaacs R (2014) Relative toxicity and residual activity of insecticides used in blueberry pest management: mortality of natural enemies. J Econ Entomol 107(1):277–285

    Article  Google Scholar 

  43. Shea K, Possingham HP (2000) Optimal release strategies for biological control agents: an application of stochastic dynamic programming to population management. J Appl Ecol 37(1):77–86

    Article  Google Scholar 

  44. Shearer PW, West JD, Walton VM, Brown PH, Svetec N, Chiu JC (2016) Seasonal cues induce phenotypic plasticity of Drosophila suzukii to enhance winter survival. BMC Ecology 16(1):1

    Article  Google Scholar 

  45. Tait G, Grassi A, Sassù F, Gottardello A, Ometto L, Mazzoni V, Antonini G, Omar RS, Anfora G (2016) Reconstruction the colonization history and the population dynamics of Drosophila suzukii in Italy. In: Book of abstracts: facing the invasion of alien arthropods species, Trento, p 48

  46. Tochen S, Dalton DT, Wiman N, Hamm C, Shearer PW, Walton VM (2014) Temperature-related development and population parameters for Drosophila suzukii (Diptera: Drosophilidae) on cherry and blueberry. Environ Entomol 43(2):501–510

    Article  Google Scholar 

  47. Tochen S, Woltz J, Dalton D, Lee J, Wiman N, Walton V (2016) Humidity affects populations of Drosophila suzukii (Diptera: Drosophilidae) in blueberry. J Appl Entomol 140(1-2):47–57

    Article  Google Scholar 

  48. Toxopeus J, Jakobs R, Ferguson LV, Gariepy TD, Sinclair BJ (2016) Reproductive arrest and stress resistance in winter-acclimated Drosophila suzukii. J Insect Physiol 89:37–51

    CAS  Article  Google Scholar 

  49. Van Timmeren S, Isaacs R (2013) Control of spotted wing drosophila, Drosophila suzukii, by specific insecticides and by conventional and organic crop protection programs. Crop Prot 54:126–133

    Article  Google Scholar 

  50. Wang XG, Kaçar G, Biondi A, Daane KM (2016) Life-history and host preference of Trichopria drosophilae. Biocontrol 61(4):387–397

    CAS  Article  Google Scholar 

  51. Wiman NG, Dalton DT, Anfora G, Biondi A, Chiu JC, Daane KM, Gerdeman B, Gottardello A, Hamby KA, Isaacs R et al (2016) Drosophila suzukii population response to environment and management strategies. J Pest Sci 89(3):653–665

    Article  Google Scholar 

  52. Wolfram Research I (2016) Mathematica http://www.wolfram.com

  53. Zhu CJ, Li J, Wang H, Zhang M, Hu HY (2017) Demographic potential of the pupal parasitoid Trichopria drosophilae (Hymenoptera: Diapriidae) reared on Drosophila suzukii (Diptera: Drosophilidae). J Asia Pac Entomol 20(3):747–751

    Article  Google Scholar 

Download references

Acknowledgments

We thank the editor and two anonymous reviewers who helped to improve this manuscript. We also thank Gabriella Tait for having provided unpublished data that have helped in understanding the dynamics of Drosophila suzukii population in the Province of Trento.

Funding

This work was funded by the Autonomous Province of Trento (Italy), Research funds for Grandi Progetti, Project LExEM (Laboratory of excellence for epidemiology and modelling, http://www.lexem.eu).

Author information

Affiliations

Authors

Contributions

FP and AP formalized the mathematical model; MVRS, GA, AG, and VW provided the biological background; FP ran all the simulations. All authors contributed critically to the drafts and gave final approval for publication.

Corresponding author

Correspondence to Ferdinand Pfab.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 244 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pfab, F., Stacconi, M.V.R., Anfora, G. et al. Optimized timing of parasitoid release: a mathematical model for biological control of Drosophila suzukii. Theor Ecol 11, 489–501 (2018). https://doi.org/10.1007/s12080-018-0382-3

Download citation

Keywords

  • Parasitoid release timing
  • Optimizing biological control
  • Parasitoid-host dynamics
  • Integrated pest management
  • Spotted wing drosophila
  • Drosophila suzukii
  • Trichopria drosophilae