Ainley, D. G., and R. J. Boekelheide, editors. 1990. Seabirds of the Farallon Islands: ecology, structure and dynamics of an upwelling-system community. Stanford University Press, Stanford, CA
Barraquand F, Yoccoz NG (2013) When can environmental variability benefit population growth? Counterintuitive effects of nonlinearities in vital rates. Theor Popul Biol 89:1–11
Article
PubMed
Google Scholar
Bates, D, and J. Chambers. 1992. Nonlinear models. Pages 421–454 in J. Chanbers and T. Hastie, editors. Statistical models in S. Wadsworth & Brooks/Cole
Bates, D. M., and D. G. Watts. 1988. Nonlinear regression analysis and its applications. John Wiley & Sons
Beniston M, Stephenson DB (2004) Extreme climatic events and their evolution under changing climatic conditions. Glob Planet Chang 44:1–9
Article
Google Scholar
Birt VL, Birt TP, Goulet D, Cairns DK, Montevecchi WA (1987) Ashmole’s halo: direct evidence for prey depletion by a seabird. Mar Ecol Prog Ser 40:205–208
Article
Google Scholar
Bjørnstad ON, Fromentin J-M, Stenseth NC, Gjøsaeter J (1999) Cycles and trends in cod populations. Proc Natl Acad Sci U S A 96:5066–5071
Article
PubMed
PubMed Central
Google Scholar
Bjørnstad ON, Nisbet RM, Fromentin J-M (2004) Trends and cohort resonant effects in age-structured populations. J Anim Ecol 73:1157–1167
Article
Google Scholar
Boekelheide R, Ainley D (1989) Age, resource availability, and breeding effort in Brandt’s cormorant. Auk 106:389–401
Google Scholar
Botsford LW, Paulsen CM (2000) Assessing covariability among populations in the presence of intraseries correlation: Columbia River spring-summer chinook salmon (Oncorhynchus tshawytscha) stocks. Can J Fish Aquat Sci 57:616–627
Article
Google Scholar
Botsford LW, Holland MD, Samhouri JF, White JW, Hastings A (2011) Importance of age structure in models of the response of upper trophic levels to fishing and climate change. ICES J Mar Sci 68:1270–1283
Article
Google Scholar
Botsford L, Holland M, Field J, Hastings A (2014) Cohort resonance: a significant component of fluctuations in recruitment, egg production, and catch of fished populations. ICES J Mar Sci 71:2158–2170
Article
Google Scholar
Cai W, Borlace S, Lengaigne M, van Rensch P, Collins M, Vecchi G, Timmermann A, Santoso A, McPhaden MJ, Wu L, England MH, Wang G, Guilyardi E, Jin F-F (2014) Increasing frequency of extreme El Niño events due to greenhouse warming. Nat Clim Chang 5:1–6
Google Scholar
Cazelles B, Chavez M, Berteaux D, Ménard F, Vik JO, Jenouvrier S, Stenseth NC (2008) Wavelet analysis of ecological time series. Oecologia 156:287–304
Article
PubMed
Google Scholar
Cilimburg AB, Lindberg MS, Tewksbury JJ, Hejl SJ (2002) Effects of dispersal on survival probability of adult yellow warblers (Dendroica petechia). Auk 119:778–789
Article
Google Scholar
Cobb KM, Charles CD, Cheng H, Edwards RL (2003) El Niño/Southern Oscillation and tropical Pacific climate during the last millennium. Nature 424:271–276
Article
PubMed
CAS
Google Scholar
Cryer, J. D., and K.-S. Chan. 2008. Time series analysis: with applications in R. Design. Second. Springer Science, New York, NY
Davies R, Wanless S, Lewis S, Hamer K (2013) Density-dependent foraging and colony growth in a pelagic seabird species under varying environmental conditions. Mar Ecol Prog Ser 485:287–294
Article
Google Scholar
Di Lorenzo E, Cobb KM, Furtado JC, Schneider N, Anderson BT, Bracco A, Alexander MA, Vimont DJ (2010) Central Pacific El Niño and decadal climate change in the North Pacific Ocean. Nat Geosci 3:762–765
Article
CAS
Google Scholar
Greenman J, Benton T (2003) The amplification of environmental noise in population models: causes and consequences. Am Nat 161:225–239
Article
PubMed
CAS
Google Scholar
Greenman J, Benton T (2005) The frequency spectrum of structured discrete time population models: its properties and their ecological implications. Oikos 110(2):369–389
Article
Google Scholar
Hatfield J, Reynolds M, Seavy N, Krause C (2012) Population dynamics of Hawaiian seabird colonies vulnerable to sea-level rise. Conserv Biol 26:667–678
Article
PubMed
Google Scholar
Jenouvrier S, Weimerskirch H, Barbraud C, Park Y-H, Cazelles B (2005) Evidence of a shift in the cyclicity of Antarctic seabird dynamics linked to climate. Proceedings Royal Soc Biological Sci Series B 272:887–895
Article
Google Scholar
Jenouvrier S, Caswell H, Barbraud C, Holland M, Stroeve J, Weimerskirch H (2009) Demographic models and IPCC climate projections predict the decline of an emperor penguin population. Proc Natl Acad Sci U S A 106:1844–1847
Article
PubMed
PubMed Central
Google Scholar
Jones NM, McChesney GJ, Parker MW, Yee JL, Carter HR, Golightly RT (2008) Breeding phenology and reproductive success of the Brandt’s cormorant at three nearshore colonies in Central California, 1997–2001. Waterbirds 31:505
Article
Google Scholar
Kaitala V, Ranta E (2001) Is the impact of environmental noise visible in the dynamics of age-structured populations? Proc R Soc London, Ser B 268:1769–1774
Article
CAS
Google Scholar
King JR, Agostini VN, Harvey CJ, McFarlane GA, Foreman MGG, Overland JE, Di Lorenzo E, Bond NA, Aydin KY (2011) Climate forcing and the California Current ecosystem. ICES J Mar Sci 68(6):1199–1216
Article
Google Scholar
Lebreton J-D, Burnham KP, Clobert J, Anderson DR (1992) Modeling survival and testing biological hypotheses using marked animals: a unified approach with case studies. Ecol Monogr 62:67–118
Article
Google Scholar
Lewis S, Sherratt T, Hamer K, Wanless S (2001) Evidence of intra-specific competition for food in a pelagic seabird. Nature 412:816–819
Article
PubMed
CAS
Google Scholar
Nur N, Sydeman W (1999) Survival, breeding probability and reproductive success in relation to population dynamics of Brandt’s cormorants Phalacrocorax penicillatus. Bird Study 46:S92–103
Article
Google Scholar
van de Pol M, Vindenes Y, Sæther B-E, Engen S, Ens BJ, Oosterbeek K, Tinbergen JM (2011) Poor environmental tracking can make extinction risk insensitive to the colour of environmental noise. Proc R Soc B Biol Sci 278:3713–3722
R Development Core Team (2017) R: a language and environment for statistical computing. R Foundation for Statistical Computing. http://www.r-project.org/
Rouyer T, Sadykov A, Ohlberger J, Stenseth NC (2012) Does increasing mortality change the response of fish populations to environmental fluctuations? Ecol Lett 15:658–665
Article
PubMed
Google Scholar
Schmidt AE, Botsford LW, Eadie JM, Bradley RW, Di Lorenzo E, Jahncke J (2014) Non-stationary seabird responses reveal shifting ENSO dynamics in the northeast Pacific. Mar Ecol Prog Ser 499:249–258
Article
Google Scholar
Schmidt AE, Dybala KE, Botsford LW, Eadie JM, Bradley RW, Jahncke J (2015) Shifting effects of ocean conditions on survival and breeding probability of a long-lived seabird. PLoS One 10:e0132372
Article
PubMed
PubMed Central
CAS
Google Scholar
Timmermann A, Oberhuber J, Bacher A, Esch M, Latif M, Roeckner E (1999) Increased El Niño frequency in a climate model forced by future greenhouse warming. Nature 398:1996–1999
Article
Google Scholar
Torrence C, Compo GP (1998) A practical guide to wavelet analysis. Bull Am Meteorol Soc 79:61–78
Article
Google Scholar
Trenberth K, Hoar T (1997) El Niño and climate change. Geophys Res Lett 24:3057–3060
Article
Google Scholar
White JW, Botsford LW, Hastings A, Holland MD (2014) Stochastic models reveal conditions for cyclic dominance in sockeye salmon populations. Ecol Monogr 84:69–90
Article
Google Scholar
Wolf SG, Snyder MA, Sydeman WJ, Doak DF, Croll DA (2010) Predicting population consequences of ocean climate change for an ecosystem sentinel, the seabird Cassin’s auklet. Glob Chang Biol 16:1923–1935
Article
Google Scholar
Wolter K, Timlin MS (1998) Measuring the strength of ENSO events: how does 1997/98 rank? Weather 53:315–324
Article
Google Scholar
Worden L, Botsford LW, Hastings A, Holland MD (2010) Frequency responses of age-structured populations: Pacific salmon as an example. Theor Popul Biol 78:239–249
Article
PubMed
Google Scholar
Yeh S-W, Kug J-S, Dewitte B, Kwon M-H, Kirtman BP, Jin F-F (2009) El Niño in a changing climate. Nature 461:511–514
Article
PubMed
CAS
Google Scholar