Skip to main content

The impact of species-neutral stage structure on macroecological patterns

Abstract

Despite its radical assumption of ecological equivalence between species, neutral biodiversity theory can often provide good fits to species abundance distributions observed in nature. Major criticisms of neutral theory have focused on interspecific differences, which are in conflict with ecological equivalence. However, neutrality in nature is also broken by differences between conspecific individuals at different life stages, which in many communities may vastly exceed interspecific differences between individuals at similar stages. These within-species asymmetries have not been fully explored in species-neutral models, and it is not known whether demographic stage structure affects macroecological patterns in neutral theory. Here, we present a two-stage neutral model where fecundity and mortality change as an individual transitions from one stage to the other. We explore several qualitatively different scenarios, and compare numerically obtained species abundance distributions to the predictions of unstructured neutral theory. We find that abundance distributions are generally robust to this kind of stage structure, but significant departures from unstructured predictions occur if adults have sufficiently low fecundity and mortality. In addition, we show that the cumulative number of births per species, which is distributed as a power law with a 3/2 exponent, is invariant even when the abundance distribution departs from unstructured model predictions. Our findings potentially explain power law-like abundance distributions in organisms with strong demographic structure, such as eusocial insects and humans, and partially rehabilitate species abundance distributions from past criticisms as to their inability to distinguish between biological mechanisms.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Alonso D, Ostling A, Etienne RS (2008) The implicit assumption of symmetry and the species abundance distribution. Ecol Lett 11(2):93–105. doi:10.1111/j.1461-0248.2007.01127.x

    PubMed  Google Scholar 

  2. Alvarez-Buylla ER, Martinez-Ramos M (1992) Demography and allometry of cecropia obtusifolia, a neotropical pioneer tree - an evaluation of the Climax-Pioneer paradigm for tropical rain forests. J Ecol 80(2):275–290

    Article  Google Scholar 

  3. Bell G (2000) The distribution of abundance in neutral communities. Am Nat 155(5):606–617. doi:10.1086/303345

    CAS  Article  PubMed  Google Scholar 

  4. Bentley RA, Hahn MW, Shennan SJ (2004) Random drift and culture change. Proc Biol Sci / R Soc 271(1547):1443–1450. doi:10.1098/rspb.2004.2746 http://rspb.royalsocietypublishing.org/content/271/1547/1443.short

    Article  Google Scholar 

  5. Chisholm RA, Pacala SW (2010) Niche and neutral models predict asymptotically equivalent species abundance distributions in high-diversity ecological communities. Proc Natl Acad Sci U S A 107(36):15,821–15,825. doi:10.1073/pnas.1009387107. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2936647&tool=pmcentrez&rendertype=abstract

  6. Clauset A, Rohilla Shalizi C, Newman J ME (2009) Power-law distributions in empirical data. SIAM Rev 51(4):661–703. doi:10.1214/13-AOAS710 arXiv:0706.1062v2

    Article  Google Scholar 

  7. Condit R, Pitman N, EGL Jr, Villa G, Muller-landau HC, Losos E (2011) Beta-diversity in tropical forest trees. Science 666:2002. doi:10.1126/science.1066854

    Google Scholar 

  8. D’Andrea R, Ostling A (2016) Challenges in linking trait patterns to niche differentiation. Oikos 125(10):1369–1385. doi:10.1111/oik.02979

    Article  Google Scholar 

  9. Ernest SKM, Valone TJ, Brown JH (2009) Long-term monitoring and experimental manipulation of a Chihuahuan Desert ecosystem near Portal, Arizona, USA. Ecol 90(January):1708

    Article  Google Scholar 

  10. Etienne RS, Olff H (2005) Confronting different models of community structure to species-abundance data: a Bayesian model comparison. Ecol Lett 8(5):493–504. doi:10.1111/j.1461-0248.2005.00745.x

    Article  PubMed  Google Scholar 

  11. Etienne RS, Alonso D, McKane AJ (2007) The zero-sum assumption in neutral biodiversity theory. J Theor Biol 248(3):522–536 . doi:10.1016/j.jtbi.2007.06.010. http://www.ncbi.nlm.nih.gov/pubmed/17640675

    Article  PubMed  Google Scholar 

  12. Gillespie CS (2015) Fitting heavy tailed distributions: the {poweRlaw} package. J Stat Softw 64(2):1–16. http://www.jstatsoft.org/v64/i02/

    Article  Google Scholar 

  13. Haarstad J (2004) University of Minnesota Cedar Creek Ecosystem Science Reserve, Experiment 122. http://www.lter.umn.edu/research/data/experiment?e122

  14. Hahn MW, Bentley RA (2003) Drift as a mechanism for cultural change: an example from baby names. Biol Lett 270(Suppl):S120–S123. doi:10.1098/rsbl.2003.0045

    Google Scholar 

  15. Harcombe PA (1987) Tree life tables. BioScience 37(8):557–568. doi:10.1525/bio.2009.59.6.3. http://www.jstor.org/stable/1310666

    Article  Google Scholar 

  16. Harte J (2003) Ecology: tail of death and resurrection. Nature 424(6952):1006–1007. doi:10.1038/4241006a

    CAS  Article  PubMed  Google Scholar 

  17. Hubbell SP (2001) The unified neutral theory of biodiversity and biogeography. Princeton University Press, Princeton

    Google Scholar 

  18. James PD (1992) The children of men. Harper & Harper, London

    Google Scholar 

  19. McGill BJ (2003) Strong and weak tests of macroecological theory. Oikos 102(3):679–685

    Article  Google Scholar 

  20. O’Dwyer JP, Chisholm RA (2014) A mean field model for competition: from neutral ecology to the Red Queen. Ecol Lett 17(8):961–969. doi:10.1111/ele.12299

    Article  PubMed  Google Scholar 

  21. O’Dwyer JP, Kandler A (2017) Novelty, popularity, and emergent neutrality: bias in the choice of baby names and lessons for analyzing cultural data. pp 1–40, arXiv:1702.08506v1

  22. O’Dwyer JP, Lake JK, Ostling A, Savage VM, Green JL (2009) An integrative framework for stochastic, size-structured community assembly. Proc Natl Acad Sci USA 106(15):6170–6175 . doi:10.1073/pnas.0813041106. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2663776&tool=pmcentrez&rendertype=abstract

  23. Prado PI, Miranda MD, Chalom A (2016) SADS: maximum likelihood models for species abundance distributions https://cran.r-project.org/package=sads

  24. R Core Team (2017) R: a language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria. https://www.r-project.org/

  25. Rosindell J, Jansen PA, Etienne RS (2012) Age structure in neutral theory resolves inconsistencies related to reproductive-size threshold. J Plant Ecol 5(1):64–71. doi:10.1093/jpe/rtr034

    Article  Google Scholar 

  26. Ruokolainen L, Ranta E, Kaitala V, Fowler MS (2009) When can we distinguish between neutral and non-neutral processes in community dynamics under ecological drift? Ecology Lett 12(9):909–919. doi:10.1111/j.1461-0248.2009.01346.x. http://www.ncbi.nlm.nih.gov/pubmed/19570103

    Article  Google Scholar 

  27. Siemann E, Tilman D, Haarstad J (1999) Abundance, diversity and body size: patterns from a grassland arthropod community UR -./documents_pdf/siemann_1999.pdf. J Anim Ecol 68(4):824–835. doi:10.1046/j.1365-2656.1999.00326.x

    Article  Google Scholar 

  28. Vergnon R, Dulvy NK, Freckleton RP (2009) Niches versus neutrality: uncovering the drivers of diversity in a species-rich community. Ecology Lett 12(10):1079–1090. doi:10.1111/j.1461-0248.2009.01364.x. http://www.ncbi.nlm.nih.gov/pubmed/19747181

    Article  Google Scholar 

  29. Volkov I, Banavar JR, Hubbell SP, Maritan A (2003) Neutral theory and relative species abundance in ecology. Nature 424(6952): 1035–1037. doi:10.1038/nature01883. http://www.ncbi.nlm.nih.gov/pubmed/12944964

    CAS  Article  PubMed  Google Scholar 

  30. White EP, Thibault KM, Xiao X (2012) Characterizing species abundance distributions across taxa and ecosystems using a simple maximum entropy model. Ecol 93(8):1772–1778

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Evan Siemann and David Tilman for generously agreeing to our use of their data in this paper. The data are available at http://www.lter.umn.edu/research/data/experiment?e122. JOD acknowledges the Simons Foundation Grant # 376199, McDonnell Foundation Grant # 220020439, and Templeton World Charity Foundation Grant # TWCF0079/AB47.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Rafael D’Andrea.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(TEX 11.9 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

D’Andrea, R., O’Dwyer, J.P. The impact of species-neutral stage structure on macroecological patterns. Theor Ecol 10, 433–442 (2017). https://doi.org/10.1007/s12080-017-0340-5

Download citation

Keywords

  • Species abundance distribution
  • Demographic structure
  • Stage structure
  • Progeny distribution
  • Neutral biodiversity theory