Theoretical Ecology

, Volume 9, Issue 4, pp 431–442 | Cite as

Vaccine-driven evolution of parasite virulence and immune evasion in age-structured population: the case of pertussis

  • Veronika Bernhauerová


Despite enormous success of mass immunization programs in reducing incidence of infectious diseases, vaccine-escape strains have emerged perhaps as a consequence of strong selection pressures exerted on parasites by vaccines. Pertussis presents a well-documented example. As a childhood infection, it exhibits age-specific transmission biased to children. Assuming different transmission rates between children and adults, I study, by means of an age-structured epidemic model, evolutionary dynamics of parasite virulence in a vaccinated population. I find that the age-structure does not affect the evolutionary dynamics of parasite virulence. Also, based on empirical data reporting antigenic divergence with vaccine strains and mutations in virulence-associated genes in pertussis populations, I allow for parallel occurrence of mutations in parasite virulence and associated immune evasion. I conclude that this simultaneous adaptation of both traits may substantially alter the evolutionary course of the parasite. In particular, higher values of virulence are favoured once the parasite is able to evade the transmission-blocking vaccine-induced immunity. On the other hand, lower values of virulence are selected for once the parasite evolves the ability to evade the virulence-blocking vaccine-induced immunity. I emphasize the importance of multi-trait evolution to assess the direction of parasite adaptation more accurately.


Age-structured model Adaptive dynamics Bordetella pertussis Immune evasion Vaccination Virulence 



I would like to acknowledge institutional support MUNI/A/1441/2014 Student Project Grant at MU. I thank two anonymous reviewers for their suggestions that helped to improve the exposition of this paper. I would also like to thank Pejman Rohani for giving me the opportunity to work on this project and Luděk Berec for his comments on the manuscript.


  1. Alizon S, Hurford A, Mideo N, van Baalen M (2009) Virulence evolution and the trade-off hypothesis: history, current state of affairs and the future. J Evol Biol 22:245–259. doi: 10.1111/j.1420-9101.2008.01658.x CrossRefPubMedGoogle Scholar
  2. Anderson RM, May RM (1982) Population biology of infectious diseases. Springer, BerlinCrossRefGoogle Scholar
  3. Anderson RM, May RM (1991) Infectious diseases of humans: Dynamics and control. Oxford, Oxford University PressGoogle Scholar
  4. André JB, Gandon S (2006) Vaccination, within-host dynamics, and virulence evolution. Evolution 60:13–23. doi: 10.1554/05-220.1 CrossRefPubMedGoogle Scholar
  5. André JB, Ferdy JB, Godelle B (2003) Within-host parasite dynamics, emerging trade-off, and evolution of virulence with immune system. Evolution 57:1489–1497. doi: 10.1554/02-667 CrossRefPubMedGoogle Scholar
  6. Bart MJ, van Gent M, van der Heide HGJ, Boekhorst J, Hermans P, Parkhill J, Mooi FR (2010) Comparative genomics of prevaccination and modern Bordetella pertussis strains. BMC Genomics 11:627. doi: 10.1186/1471-2164-11-627 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Blackwood JC, Cummings DAT, Broutind H, Iamsirithaworn S, Rohani P (2013) Deciphering the impacts of vaccination and immunity on pertussis epidemiology in Thailand. PNAS 110:9595–9600. doi: 10.1073/pnas.1220908110 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Bodilis H, Guiso N (2013) Virulence of pertactin-negative Bordetella pertussis isolates from infants. France Emerg Infect Dis 19:471–4. doi: 10.3201/1903.121475 CrossRefPubMedGoogle Scholar
  9. Borisova O, Kombarova SY, Zakharova NS, van Gent M, Aleshkin VA, Mazurova I, Mooi FR (2007) Antigenic divergence between Bordetella pertussis clinical isolates from Moscow, Russia, and vaccine strains. Clin Vaccine Immunol 14:234–238. doi: 10.1128/CVI.00294-06 CrossRefPubMedPubMedCentralGoogle Scholar
  10. van Boven M, Mooi FR, Schellekens JFP, de Melker HE, Kretzschmar M (2005) Pathogen adaptation under imperfect vaccination: implications for pertussis. Proc Biol Sci 272:1617–1624. doi: 10.1098/rspb.2005.3108 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Cassiday P, Sanden G, Heuvelman K, Mooi F, Bisgard KM, Popovic T (2000) Polymorphism in Bordetella pertussis pertactin and pertussis toxin virulence factors in the United states, 19351999. J Infect Dis 182:1402–1408. doi: 10.1086/315881 CrossRefPubMedGoogle Scholar
  12. Chiappini E, Stival A, Galli L, de Martino M (2013) Pertussis re-emergence in the post-vaccination era. BMC Infect Dis 13:51. doi: 10.1186/1471-2334-13-151 CrossRefGoogle Scholar
  13. Dieckmann U (2002) Adaptive dynamics of pathogen-host interactions. In: Dieckmann U, Metz JAJ, Sabelis MW, Sigmund K (eds) Adaptive dynamics of infectious diseases. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  14. van den Driessche P, Watmough J (2002) Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math Biosci 180:29–48. doi: 10.1016/S0025-5564(02)00108-6 CrossRefPubMedGoogle Scholar
  15. Elomaa A, Advani A, Donnelly D, Antila M, Mertsola J, He Q, Hallander H (2007) Population dynamics of Bordetella pertussis in Finland and Sweden, neighbouring countries with different vaccination histories. Vaccine 25:918–926. doi: 10.1016/j.vaccine.2006.09.012 CrossRefPubMedGoogle Scholar
  16. Fenner F, Henderson DA, Arita I, Ježek Z, Ladnyi ID (1988) Smallpox and its eradication. World Health OrganizationGoogle Scholar
  17. Gandon S, Jansen VAA (2001) Host life history and the evolution of parasite virulence. Evolution 55:1056–1062. doi: 10.1111/j.0014-3820.2001.tb00622.x CrossRefPubMedGoogle Scholar
  18. Gandon S, Mackinnon MJ, Nee S, Read AF (2001) Imperfect vaccines and the evolution of pathogen virulence. Nature 414:751–756. doi: 10.1038/414751a CrossRefPubMedGoogle Scholar
  19. Gandon S, Mackinnon MJ, Nee S, Read AF (2003) Imperfect vaccination: some epidemiological and evolutionary consequences. Proc Biol Sci 270:1129–1136. doi: 10.1098/rspb.2003.2370 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Ganusov VV, Antia R (2006) Imperfect vaccines and the evolution of pathogens causing acute infections in vertebrates. Evolution 60:957–969. doi: 10.1554/05-504.1 CrossRefPubMedGoogle Scholar
  21. Geritz SAH, Kisdi E, Meszena G, Metz JAJ (1998) Evolutionarily singular strategies and the adaptive growth and branching of the evolutionary tree. Evol Ecol 12:35–57. doi: 10.1023/A:1006554906681 CrossRefGoogle Scholar
  22. Han HJ, Kamachi K, Okada K, Toyoizumi-Ajisaka H, Sasaki Y, Arakawa Y (2008) Antigenic variation in Bordetella pertussis isolates recovered from adults and children in Japan. Vaccine 26:1530–4. doi: 10.1016/j.vaccine.2008.01.020 CrossRefPubMedGoogle Scholar
  23. Hethcote HW (2000) The mathematics of infectious diseases. SIAM Rev 42:599–653. doi: 10.1137/S0036144500371907 CrossRefGoogle Scholar
  24. Hurford A, Cownden D, Day T (2010) Next-generation tools for evolutionary invasion analyses. J R Soc Interface 7:561–571. doi: 10.1098/rsif.2009.0448 CrossRefPubMedGoogle Scholar
  25. Jackson DW, Rohani P (2013) Perplexities of pertussis: recent global epidemiological trends and their potential causes. Epidemiol Infect 142:1–13. doi: 10.1017/S0950268812003093 Google Scholar
  26. Keeling MJ, Rohani P (2008) Modeling infectious diseases in humans and animals. Princeton University PressGoogle Scholar
  27. Kretzschmar M, Teunis PFM, Pebody RG (2010) Incidence and reproduction numbers of pertussis: estimates from serological and social contact data in five European countries. PLoS Med 7:e1000,291. doi: 10.1371/journal.pmed.1000291 CrossRefGoogle Scholar
  28. Lavine J, Bjørnstad O, de Blasiod BF, Storsaeterf J (2012) Short-lived immunity against pertussis, age-specific routes of transmission, and the utility of a teenage booster vaccine. Vaccine 30:544–551. doi: 10.1016/j.vaccine.2011.11.065 CrossRefPubMedGoogle Scholar
  29. van Loo IH, Mooi FR (2002) Changes in the Dutch Bordetella pertussis population in the first 20 years after the introduction of whole-cell vaccines. Microbiology 148:2011–2018. doi: 10.1099/00221287-148-7-2011 CrossRefPubMedGoogle Scholar
  30. van Loo IH, van der Heide HG, Nagelkerke NJ, Verhoef J, Mooi FR (1999) Temporal trends in the population structure of Bordetella pertussis during 1949-1996 in a highly vaccinated population. J Infect Dis 179:915–923. doi: 10.1086/314690 CrossRefPubMedGoogle Scholar
  31. McLean AR (1998) Vaccines and their impact on the control of disease. Br Med Bull 54:545–556. doi: 10.1093/oxfordjournals.bmb.a011709 CrossRefPubMedGoogle Scholar
  32. Miller MR, White A, Boots M (2006) The evolution of parasites in response to tolerance in their hosts: the good, the bad, and apparent commensalism. Evolution 60:945–956. doi: 10.1111/j.0014-3820.2006.tb01173.x CrossRefPubMedGoogle Scholar
  33. Mooi FR, van Oirschot H, Heuvelman K, van der Heide HG, Gaastra W, Willems RJ (1998) Polymorphism in the Bordetella pertussis virulence factors p.69/pertactin and pertussis toxin in the Netherlands: temporal trends and evidence for vaccine-driven evolution. Infect Immun 66:670– 675PubMedPubMedCentralGoogle Scholar
  34. Mooi FR, He Q, van Oirschot H, Mertsola J (1999) Variation in the Bordetella pertussis virulence factors pertussis toxin and pertactin in vaccine strains and clinical isolates in Finland. Infect Immun 67:3133–3134PubMedPubMedCentralGoogle Scholar
  35. Mooi FR, van Loo IH, King AJ (2001) Adaptation of Bordetella pertussis to vaccination: a cause for its reemergence? Emerg Infect Dis 7:526–528CrossRefPubMedPubMedCentralGoogle Scholar
  36. Mooi FR, van Loo IHM, van Gent M, He Q, Bart MJ, Heuvelman KJ, de Greeff SC, Diavatopoulos D, Teunis P, Nagelkerke N, Mertsola J (2009) Bordetella pertussis strains with increased toxin production associated with pertussis resurgence. Emerg Infect Dis 15:1206–13. doi: 10.3201/eid1508.081511 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Mooi FR, van der Maas NAT, Melker HED (2013) Pertussis resurgence: waning immunity and pathogen adaptation—two sides of the same coin. Epidemiol Infect 142:685–694. doi: 10.1017/S0950268813000071 CrossRefPubMedGoogle Scholar
  38. Parvinen K (2005) Evolutionary suicide. Acta Biotheor 53:241–264. doi: 10.1007/s10441-005-2531-5 CrossRefPubMedGoogle Scholar
  39. Queenan AM, Cassiday PK, Evangelista A (2013) Pertactin-negative variants of Bordetella pertussis in the United States. N Engl J Med 368:583–4. doi: 10.1056/NEJMc1209369 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Read AF, Mackinnon MJ (2007) Pathogen evolution in a vaccinated world. In: Stearns SC, Koella JC (eds) Evolution in Health and Disease. Oxford University Press, pp 139– 152Google Scholar
  41. Read AF, Baigent SJ, Powers C, Kgosana LB, Blackwell L, Smith LP, Kennedy DA, Walkden-Brown SW, Nair VK (2015) Imperfect vaccination can enhance the transmission of highly virulent pathogens. PLoS Biol 13:e1002,198. doi: 10.1371/journal.pbio.1002198 CrossRefGoogle Scholar
  42. Restif O, Grenfell BT (2007) Vaccination and the dynamics of immune evasion. J R Soc Interface 4:143–153. doi: 10.1098/rsif.2006.0167 CrossRefPubMedGoogle Scholar
  43. Rohani P, Earn DJ, Grenfell BT (2000) Impact of vaccination on pertussis transmission in England and Wales. Lancet 355:285–286. doi: 10.1016/S0140-6736(99)04482-7 CrossRefPubMedGoogle Scholar
  44. Wallinga J, Teunis P, Kretzschmar M (2006) Using data on social contacts to estimate age-specific transmission parameters for respiratory-spread infectious agents. Am J Epidemiol 164:936–944. doi: 10.1093/aje/kwj317 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Department of Mathematics and Statistics, Faculty of ScienceMasaryk UniversityBrnoCzech Republic
  2. 2.Department of Infectious DiseasesSt. Jude Children’s Research HospitalMemphisUSA

Personalised recommendations