Pattern of functional extinctions in ecological networks with a variety of interaction types

Abstract

There is a strong trend of declining populations in many species of both animals and plants. Dwindling numbers of species can eventually lead to their functional extinction. Functional, or ecological, extinction occurs when a species becomes too rare to fulfill its ecological, interactive role in the ecosystem, leading to true (numerical) extinction of other depending species. Recent theoretical work on food webs suggests that the frequency of functional extinction might be surprisingly high. However, little is known about the risk of functional species extinctions in networks with other types of interactions than trophic ones. Here, we explore the frequency of functional extinctions in model ecological networks having different proportions of antagonistic and mutualistic links. Furthermore, we investigate the topological relationship between functionally and numerically extinct species. We find that (1) the frequency of functional extinctions is higher in networks containing a mixture of antagonistic and mutualistic interactions than in networks with only one type of interaction, (2) increased mortality rate of species having both mutualistic and antagonistic links is more likely to lead to extinction of another species than to extinction of the species itself compared to species having only mutualistic or antagonistic links, and (3) trophic distance (shortest path) between functionally and numerically extinct species is, on average, longer than one, indicating the importance of indirect effects. These results generalize the findings of an earlier study on food webs, demonstrating the potential importance of functional extinction in a variety of ecological network types.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Allesina S, Tang S (2012) Stability criteria for complex ecosystems. Nature 483:205–208. doi:10.1038/nature10832

    CAS  Article  PubMed  Google Scholar 

  2. Altermatt F, Pearse IS (2011) Similarity and specialization of the larval versus adult diet of European butterflies and moths. Am Nat 178:372–382

    Article  PubMed  Google Scholar 

  3. Anderson SH, Kelly D, Ladley JJ et al (2011) Cascading effects of bird functional extinction reduce pollination and plant density. Science 331:1068–1071. doi:10.1126/science.1199092

    CAS  Article  PubMed  Google Scholar 

  4. Barnosky AD, Matzke N, Tomiya S et al (2011) Has the earth’s sixth mass extinction already arrived? Nature 471:51–57. doi:10.1038/nature09678

    CAS  Article  PubMed  Google Scholar 

  5. Baum JK, Worm B (2009) Cascading top-down effects of changing oceanic predator abundances. J Anim Ecol 78:699–714. doi:10.1111/j.1365-2656.2009.01531.x

    Article  PubMed  Google Scholar 

  6. Baum JK, Myers RA, Kehler DG et al (2003) Collapse and conservation of shark populations in the northwest atlantic. Science 299:389–392. doi:10.1126/science.1079777

    CAS  Article  PubMed  Google Scholar 

  7. Berlow E, Neutel A-M, Cohen J et al (2004) Interaction strengths in food webs: issues and opportunities. J Anim Ecol 73:585–598

    Article  Google Scholar 

  8. Berlow EL, Dunne JA, Martinez ND et al (2009) Simple prediction of interaction strengths in complex food webs. Proc Natl Acad Sci 106:187–191. doi:10.1073/pnas.0806823106

    CAS  Article  PubMed  Google Scholar 

  9. Brodie JF, Aslan CE, Rogers HS et al (2014) Secondary extinctions of biodiversity. Trends Ecol Evol 29:664–672

    Article  PubMed  Google Scholar 

  10. Brummitt N, Bachman SP, Moat J (2008) Applications of the IUCN Red List: towards a global barometer for plant diversity. Endanger Species Res 6:127–135. doi:10.3354/esr00135

    Article  Google Scholar 

  11. Butchart SHM, Walpole M, Collen B et al (2010) Global biodiversity: indicators of recent declines. Science 328:1164–1168. doi:10.1126/science.1187512

    CAS  Article  PubMed  Google Scholar 

  12. Casini M, Hjelm J, Molinero J-C et al (2009) Trophic cascades promote threshold-like shifts in pelagic marine ecosystems. Proc Natl Acad Sci 106:197–202. doi:10.1073/pnas.0806649105

    CAS  Article  PubMed  Google Scholar 

  13. Christianou M, Ebenman B (2005) Keystone species and vulnerable species in ecological communities: strong or weak interactors? J Theor Biol 235:95–103

    Article  PubMed  Google Scholar 

  14. Cohen JE, Newman CM (1985) A stochastic theory of community food webs: I. Models and aggregated data. Proc R Soc Lond B Biol Sci 224:421–448. doi:10.1098/rspb.1985.0042

    Article  Google Scholar 

  15. Collen B, Loh J, Whitmee S et al (2009) Monitoring change in vertebrate abundance: the living planet index. Conserv Biol 23:317–327. doi:10.1111/j.1523-1739.2008.01117.x

    Article  PubMed  Google Scholar 

  16. Colwell RK, Dunn RR, Harris NC (2012) Coextinction and persistence of dependent species in a changing world. Annu Rev Ecol Evol Syst 43:183–203

    Article  Google Scholar 

  17. Cury PM, Boyd IL, Bonhommeau S et al (2011) Global seabird response to forage fish depletion—one-third for the birds. Science 334:1703–1706. doi:10.1126/science.1212928

    CAS  Article  PubMed  Google Scholar 

  18. De Ruiter P, Neutel A-M, Moore JC (1995) Energetics, patterns of interaction strengths, and stability in real ecosystems. Science 269:1257–1260

    Article  PubMed  Google Scholar 

  19. De’ath G, Fabricius KE (2000) Classification and regression trees: a powerful yet simple technique for ecological data analysis. Ecology 81:3178–3192. doi:10.1890/0012-9658(2000)081[3178:CARTAP]2.0.CO;2

    Article  Google Scholar 

  20. Di Marco M, Boitani L, Mallon D et al (2014) A retrospective evaluation of the global decline of carnivores and ungulates. Conserv Biol 28:1109–1118. doi:10.1111/cobi.12249

    Article  PubMed  Google Scholar 

  21. Dirzo R, Young HS, Galetti M et al (2014) Defaunation in the anthropocene. Science 345:401–406. doi:10.1126/science.1251817

    CAS  Article  PubMed  Google Scholar 

  22. Ebenman B, Law R, Borrvall C (2004) Community viability analysis: the response of ecological communities to species loss. Ecology 85:2591–2600

    Article  Google Scholar 

  23. Estes JA, Duggins DO, Rathbun GB (1989) The ecology of extinctions in kelp forest communities. Conserv Biol 3:252–264

    Article  Google Scholar 

  24. Estes JA, Tinker MT, Bodkin JL (2010) Using ecological function to develop recovery criteria for depleted species: sea otters and kelp forests in the Aleutian archipelago. Conserv Biol 24:852–860. doi:10.1111/j.1523-1739.2009.01428.x

    Article  PubMed  Google Scholar 

  25. Estes JA, Terborgh J, Brashares JS et al (2011) Trophic downgrading of planet earth. Science 333:301–306. doi:10.1126/science.1205106

    CAS  Article  PubMed  Google Scholar 

  26. Fontaine C, Guimarães PR, Kéfi S et al (2011) The ecological and evolutionary implications of merging different types of networks. Ecol Lett 14:1170–1181. doi:10.1111/j.1461-0248.2011.01688.x

    Article  PubMed  Google Scholar 

  27. Fowler M (2010) Extinction cascades and the distribution of interactions. Oikos 119:864–873

    Article  Google Scholar 

  28. Frank KT, Petrie B, Choi JS, Leggett WC (2005) Trophic cascades in a formerly cod-dominated ecosystem. Science 308:1621–1623. doi:10.1126/science.1113075

    CAS  Article  PubMed  Google Scholar 

  29. Galetti M, Guevara R, Côrtes MC et al (2013) Functional extinction of birds drives rapid evolutionary changes in seed size. Science 340:1086–1090. doi:10.1126/science.1233774

    CAS  Article  PubMed  Google Scholar 

  30. Gaston KJ, Blackburn TM, Goldewijk KK (2003) Habitat conversion and global avian biodiversity loss. Proc Biol Sci 270:1293–1300

    Article  PubMed  PubMed Central  Google Scholar 

  31. Haydon D (1994) Pivotal assumptions determining the relationship between stability and complexity—an analytical synthesis of the stability-complexity debate. Am Nat 144:14–29

    Article  Google Scholar 

  32. Hong Y (2013) On computing the distribution function for the Poisson binomial distribution. Comput Stat Data Anal 59:41–51. doi:10.1016/j.csda.2012.10.006

    Article  Google Scholar 

  33. Jackson JBC, Kirby MX, Berger WH et al (2001) Historical overfishing and the recent collapse of coastal ecosystems. Science 293:629–637. doi:10.1126/science.1059199

    CAS  Article  PubMed  Google Scholar 

  34. James A, Plank MJ, Rossberg AG et al (2015) Constructing random matrices to represent real ecosystems. Am Nat 185:680–692

    Article  PubMed  Google Scholar 

  35. Joppa LN, Roberts DL, Pimm SL (2010) How many species of flowering plants are there? Proc R Soc Lond B Biol Sci. doi:10.1098/rspb.2010.1004

    Google Scholar 

  36. Kaneryd L, Borrvall C, Berg S et al (2012) Species-rich ecosystems are vulnerable to cascading extinctions in an increasingly variable world. Ecol Evol 2:858–874

    Article  PubMed  PubMed Central  Google Scholar 

  37. Kokkoris G, Jansen VAA, Loreau M et al (2002) Variability in interaction strength and implications for biodiversity. J Anim Ecol 71:362–371

    Article  Google Scholar 

  38. Kondoh M, Mougi A (2015) Interaction-type diversity hypothesis and interaction strength: the condition for the positive complexity-stability effect to arise. Popul Ecol. doi:10.1007/s10144-014-0475-9

  39. Loh J, Green RE, Ricketts T et al (2005) The living planet index: using species population time series to track trends in biodiversity. Philos Trans R Soc B Biol Sci 360:289–295. doi:10.1098/rstb.2004.1584

    Article  Google Scholar 

  40. May RM (1972) Will a large complex system be stable? Nature 238:413–414. doi:10.1038/238413a0

    CAS  Article  PubMed  Google Scholar 

  41. McCann K (2000) The diversity-stability debate. Nature 405:228–233

    CAS  Article  PubMed  Google Scholar 

  42. McCann K, Hastings A, Huxel GR (1998) Weak trophic interactions and the balance of nature. Nature 393:794–798

    Article  Google Scholar 

  43. McConkey KR, Drake DR (2006) Flying foxes cease to function as seed dispersers long before they become rare. Ecology 87:271–276. doi:10.1890/05-0386

    Article  PubMed  Google Scholar 

  44. Melián CJ, Bascompte J, Jordano P, Krivan V (2009) Diversity in a complex ecological network with two interaction types. Oikos 118:122–130. doi:10.1111/j.1600-0706.2008.16751.x

  45. Mougi A, Kondoh M (2012) Diversity of interaction types and ecological community stability. Science 337:349–351. doi:10.1126/science.1220529

    CAS  Article  PubMed  Google Scholar 

  46. Mougi A, Kondoh M (2014) Stability of competition–antagonism–mutualism hybrid community and the role of community network structure. J Theor Biol 360:54–58. doi:10.1016/j.jtbi.2014.06.030

    Article  PubMed  Google Scholar 

  47. Neutel A-M, Thorne MAS (2014) Interaction strengths in balanced carbon cycles and the absence of a relation between ecosystem complexity and stability. Ecol Lett 17:651–661. doi:10.1111/ele.12266

    Article  PubMed  PubMed Central  Google Scholar 

  48. Neutel A-M, Heesterbeek JAP, de Ruiter PC (2002) Stability in real food webs: weak links in long loops. Science 296:1120–1123. doi:10.1126/science.1068326

    CAS  Article  PubMed  Google Scholar 

  49. Pereira HM, Leadley PW, Proença V et al (2010) Scenarios for global biodiversity in the 21st century. Science 330:1496–1501. doi:10.1126/science.1196624

    CAS  Article  PubMed  Google Scholar 

  50. Pimm SL, Jenkins CN, Abell R et al (2014) The biodiversity of species and their rates of extinction, distribution, and protection. Science 344:1246752. doi:10.1126/science.1246752

    CAS  Article  PubMed  Google Scholar 

  51. Redford K, Feinsinger P (2001) The half-empty forest: sustainable use and the ecology of interactions. In: Reynold D, Mace G, Redford K, Robinson J (eds) Conservation of exploited species. Cambridge University Press, UK, pp 370–399

    Google Scholar 

  52. Ripple WJ, Estes JA, Beschta RL et al (2014) Status and ecological effects of the world’s largest carnivores. Science 343:1241484. doi:10.1126/science.1241484

    Article  PubMed  Google Scholar 

  53. Säterberg T, Sellman S, Ebenman B (2013) High frequency of functional extinctions in ecological networks. Nature 499:468–470. doi:10.1038/nature12277

    Article  PubMed  Google Scholar 

  54. Sauve AMC, Fontaine C, Thébault E (2014) Structure–stability relationships in networks combining mutualistic and antagonistic interactions. Oikos 123:378–384. doi:10.1111/j.1600-0706.2013.00743.x

    Article  Google Scholar 

  55. Sauve AMC, Fontaine C, Thébault E (2015) Stability of a diamond-shaped module with multiple interaction types. Theor Ecol. doi:10.1007/s12080-015-0260-1

    Google Scholar 

  56. Schipper J, Chanson JS, Chiozza F et al (2008) The status of the world’s land and marine mammals: diversity, threat, and knowledge. Science 322:225–230. doi:10.1126/science.1165115

    CAS  Article  PubMed  Google Scholar 

  57. Sekercioğlu ÇH, Daily GC, Ehrlich PR (2004) Ecosystem consequences of bird declines. Proc Natl Acad Sci 101:18042–18047. doi:10.1073/pnas.0408049101

    Article  PubMed  PubMed Central  Google Scholar 

  58. Smith ADM, Brown CJ, Bulman CM et al (2011) Impacts of fishing low–trophic level species on marine ecosystems. Science 333:1147–1150. doi:10.1126/science.1209395

    CAS  Article  PubMed  Google Scholar 

  59. Soulé ME, Estes JA, Berger J, Del Rio CM (2003) Ecological effectiveness: conservation goals for interactive species. Conserv Biol 17:1238–1250. doi:10.1046/j.1523-1739.2003.01599.x

    Article  Google Scholar 

  60. Soulé ME, Estes JA, Miller B, Honnold DL (2005) Strongly interacting species: conservation policy, management, and ethics. Bioscience 55:168–176. doi:10.1641/0006-3568(2005)055[0168:SISCPM]2.0.CO;2

    Article  Google Scholar 

  61. Stouffer DB, Bascompte J (2011) Compartmentalization increases food-web persistence. Proc Natl Acad Sci 108:3648–3652. doi:10.1073/pnas.1014353108

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  62. Suweis S, Grilli J, Maritan A (2014) Disentangling the effect of hybrid interactions and of the constant effort hypothesis on ecological community stability. Oikos 123:525–532. doi:10.1111/j.1600-0706.2013.00822.x

    Article  Google Scholar 

  63. Tang S, Pawar S, Allesina S (2014) Correlation between interaction strengths drives stability in large ecological networks. Ecol Lett. doi:10.1111/ele.12312

    PubMed  Google Scholar 

  64. Thébault E, Huber V, Loreau M (2007) Cascading extinctions and ecosystem functioning: contrasting effects of diversity depending on food web structure. Oikos 116:163–173. doi:10.1111/j.2006.0030-1299.15007.x

    Article  Google Scholar 

  65. Therneau T, Atkinson B, Ripley B (2014) RPART: recursive partitioning and regression trees. R package version 4.1-8

Download references

Acknowledgments

We thank two anonymous reviewers for their valuable comments. This work was financed through a Faculty grant from Linköping University.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Bo Ebenman.

Appendix

Appendix

Fig. A1
figure7

Frequency of functional extinctions as a function of the strength of intraspecific competition and the proportion of mutualistic links. Boxplots represent the proportion of perturbations that leads to functional extinction in 100 replicate bipartite networks with different fractions of mutualistic links and strengths of intraspecific competition

Fig. A2
figure8

The strength of intraspecific interactions relative to that of interspecific interactions in bipartite networks. Defined as the mean of the absolute values of all elements on the diagonal of the interaction matrix divided by the mean of the absolute values of all non-zero off-diagonal elements of the interaction matrix

Fig. A3
figure9

Regression tree explaining the frequency of functional extinctions within networks. Predictor variables: α ii strength of intraspecific competition, pM proportion of mutualistic links in the network

Fig. A4
figure10

Trophic distance (shortest path) between functionally extinct species and numerically extinct species in bipartite networks. Observed number of numerical extinctions at different distances from the functionally extinct species

Fig. A5
figure11

Tendency of numerical extinction at different trophic distances from the functionally extinct species in bipartite networks. A value of 0 indicates that the observed number of numerical extinctions at a specific distance is the same as would be expected if all species were equally likely to go extinct; a value smaller than 0 or larger than 0 indicates that the observed number of numerical extinctions tends to be smaller or higher than the random expectation, respectively

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sellman, S., Säterberg, T. & Ebenman, B. Pattern of functional extinctions in ecological networks with a variety of interaction types. Theor Ecol 9, 83–94 (2016). https://doi.org/10.1007/s12080-015-0275-7

Download citation

Keywords

  • Functional extinction
  • Declining populations
  • Interaction type
  • Interaction strength
  • Ecological network