Theoretical Ecology

, Volume 9, Issue 1, pp 83–94 | Cite as

Pattern of functional extinctions in ecological networks with a variety of interaction types

  • Stefan Sellman
  • Torbjörn Säterberg
  • Bo EbenmanEmail author


There is a strong trend of declining populations in many species of both animals and plants. Dwindling numbers of species can eventually lead to their functional extinction. Functional, or ecological, extinction occurs when a species becomes too rare to fulfill its ecological, interactive role in the ecosystem, leading to true (numerical) extinction of other depending species. Recent theoretical work on food webs suggests that the frequency of functional extinction might be surprisingly high. However, little is known about the risk of functional species extinctions in networks with other types of interactions than trophic ones. Here, we explore the frequency of functional extinctions in model ecological networks having different proportions of antagonistic and mutualistic links. Furthermore, we investigate the topological relationship between functionally and numerically extinct species. We find that (1) the frequency of functional extinctions is higher in networks containing a mixture of antagonistic and mutualistic interactions than in networks with only one type of interaction, (2) increased mortality rate of species having both mutualistic and antagonistic links is more likely to lead to extinction of another species than to extinction of the species itself compared to species having only mutualistic or antagonistic links, and (3) trophic distance (shortest path) between functionally and numerically extinct species is, on average, longer than one, indicating the importance of indirect effects. These results generalize the findings of an earlier study on food webs, demonstrating the potential importance of functional extinction in a variety of ecological network types.


Functional extinction Declining populations Interaction type Interaction strength Ecological network 



We thank two anonymous reviewers for their valuable comments. This work was financed through a Faculty grant from Linköping University.


  1. Allesina S, Tang S (2012) Stability criteria for complex ecosystems. Nature 483:205–208. doi: 10.1038/nature10832 CrossRefPubMedGoogle Scholar
  2. Altermatt F, Pearse IS (2011) Similarity and specialization of the larval versus adult diet of European butterflies and moths. Am Nat 178:372–382CrossRefPubMedGoogle Scholar
  3. Anderson SH, Kelly D, Ladley JJ et al (2011) Cascading effects of bird functional extinction reduce pollination and plant density. Science 331:1068–1071. doi: 10.1126/science.1199092 CrossRefPubMedGoogle Scholar
  4. Barnosky AD, Matzke N, Tomiya S et al (2011) Has the earth’s sixth mass extinction already arrived? Nature 471:51–57. doi: 10.1038/nature09678 CrossRefPubMedGoogle Scholar
  5. Baum JK, Worm B (2009) Cascading top-down effects of changing oceanic predator abundances. J Anim Ecol 78:699–714. doi: 10.1111/j.1365-2656.2009.01531.x CrossRefPubMedGoogle Scholar
  6. Baum JK, Myers RA, Kehler DG et al (2003) Collapse and conservation of shark populations in the northwest atlantic. Science 299:389–392. doi: 10.1126/science.1079777 CrossRefPubMedGoogle Scholar
  7. Berlow E, Neutel A-M, Cohen J et al (2004) Interaction strengths in food webs: issues and opportunities. J Anim Ecol 73:585–598CrossRefGoogle Scholar
  8. Berlow EL, Dunne JA, Martinez ND et al (2009) Simple prediction of interaction strengths in complex food webs. Proc Natl Acad Sci 106:187–191. doi: 10.1073/pnas.0806823106 CrossRefPubMedGoogle Scholar
  9. Brodie JF, Aslan CE, Rogers HS et al (2014) Secondary extinctions of biodiversity. Trends Ecol Evol 29:664–672CrossRefPubMedGoogle Scholar
  10. Brummitt N, Bachman SP, Moat J (2008) Applications of the IUCN Red List: towards a global barometer for plant diversity. Endanger Species Res 6:127–135. doi: 10.3354/esr00135 CrossRefGoogle Scholar
  11. Butchart SHM, Walpole M, Collen B et al (2010) Global biodiversity: indicators of recent declines. Science 328:1164–1168. doi: 10.1126/science.1187512 CrossRefPubMedGoogle Scholar
  12. Casini M, Hjelm J, Molinero J-C et al (2009) Trophic cascades promote threshold-like shifts in pelagic marine ecosystems. Proc Natl Acad Sci 106:197–202. doi: 10.1073/pnas.0806649105 CrossRefPubMedGoogle Scholar
  13. Christianou M, Ebenman B (2005) Keystone species and vulnerable species in ecological communities: strong or weak interactors? J Theor Biol 235:95–103CrossRefPubMedGoogle Scholar
  14. Cohen JE, Newman CM (1985) A stochastic theory of community food webs: I. Models and aggregated data. Proc R Soc Lond B Biol Sci 224:421–448. doi: 10.1098/rspb.1985.0042 CrossRefGoogle Scholar
  15. Collen B, Loh J, Whitmee S et al (2009) Monitoring change in vertebrate abundance: the living planet index. Conserv Biol 23:317–327. doi: 10.1111/j.1523-1739.2008.01117.x CrossRefPubMedGoogle Scholar
  16. Colwell RK, Dunn RR, Harris NC (2012) Coextinction and persistence of dependent species in a changing world. Annu Rev Ecol Evol Syst 43:183–203CrossRefGoogle Scholar
  17. Cury PM, Boyd IL, Bonhommeau S et al (2011) Global seabird response to forage fish depletion—one-third for the birds. Science 334:1703–1706. doi: 10.1126/science.1212928 CrossRefPubMedGoogle Scholar
  18. De Ruiter P, Neutel A-M, Moore JC (1995) Energetics, patterns of interaction strengths, and stability in real ecosystems. Science 269:1257–1260CrossRefPubMedGoogle Scholar
  19. De’ath G, Fabricius KE (2000) Classification and regression trees: a powerful yet simple technique for ecological data analysis. Ecology 81:3178–3192. doi: 10.1890/0012-9658(2000)081[3178:CARTAP]2.0.CO;2 CrossRefGoogle Scholar
  20. Di Marco M, Boitani L, Mallon D et al (2014) A retrospective evaluation of the global decline of carnivores and ungulates. Conserv Biol 28:1109–1118. doi: 10.1111/cobi.12249 CrossRefPubMedGoogle Scholar
  21. Dirzo R, Young HS, Galetti M et al (2014) Defaunation in the anthropocene. Science 345:401–406. doi: 10.1126/science.1251817 CrossRefPubMedGoogle Scholar
  22. Ebenman B, Law R, Borrvall C (2004) Community viability analysis: the response of ecological communities to species loss. Ecology 85:2591–2600CrossRefGoogle Scholar
  23. Estes JA, Duggins DO, Rathbun GB (1989) The ecology of extinctions in kelp forest communities. Conserv Biol 3:252–264CrossRefGoogle Scholar
  24. Estes JA, Tinker MT, Bodkin JL (2010) Using ecological function to develop recovery criteria for depleted species: sea otters and kelp forests in the Aleutian archipelago. Conserv Biol 24:852–860. doi: 10.1111/j.1523-1739.2009.01428.x CrossRefPubMedGoogle Scholar
  25. Estes JA, Terborgh J, Brashares JS et al (2011) Trophic downgrading of planet earth. Science 333:301–306. doi: 10.1126/science.1205106 CrossRefPubMedGoogle Scholar
  26. Fontaine C, Guimarães PR, Kéfi S et al (2011) The ecological and evolutionary implications of merging different types of networks. Ecol Lett 14:1170–1181. doi: 10.1111/j.1461-0248.2011.01688.x CrossRefPubMedGoogle Scholar
  27. Fowler M (2010) Extinction cascades and the distribution of interactions. Oikos 119:864–873CrossRefGoogle Scholar
  28. Frank KT, Petrie B, Choi JS, Leggett WC (2005) Trophic cascades in a formerly cod-dominated ecosystem. Science 308:1621–1623. doi: 10.1126/science.1113075 CrossRefPubMedGoogle Scholar
  29. Galetti M, Guevara R, Côrtes MC et al (2013) Functional extinction of birds drives rapid evolutionary changes in seed size. Science 340:1086–1090. doi: 10.1126/science.1233774 CrossRefPubMedGoogle Scholar
  30. Gaston KJ, Blackburn TM, Goldewijk KK (2003) Habitat conversion and global avian biodiversity loss. Proc Biol Sci 270:1293–1300CrossRefPubMedPubMedCentralGoogle Scholar
  31. Haydon D (1994) Pivotal assumptions determining the relationship between stability and complexity—an analytical synthesis of the stability-complexity debate. Am Nat 144:14–29CrossRefGoogle Scholar
  32. Hong Y (2013) On computing the distribution function for the Poisson binomial distribution. Comput Stat Data Anal 59:41–51. doi: 10.1016/j.csda.2012.10.006 CrossRefGoogle Scholar
  33. Jackson JBC, Kirby MX, Berger WH et al (2001) Historical overfishing and the recent collapse of coastal ecosystems. Science 293:629–637. doi: 10.1126/science.1059199 CrossRefPubMedGoogle Scholar
  34. James A, Plank MJ, Rossberg AG et al (2015) Constructing random matrices to represent real ecosystems. Am Nat 185:680–692CrossRefPubMedGoogle Scholar
  35. Joppa LN, Roberts DL, Pimm SL (2010) How many species of flowering plants are there? Proc R Soc Lond B Biol Sci. doi: 10.1098/rspb.2010.1004 Google Scholar
  36. Kaneryd L, Borrvall C, Berg S et al (2012) Species-rich ecosystems are vulnerable to cascading extinctions in an increasingly variable world. Ecol Evol 2:858–874CrossRefPubMedPubMedCentralGoogle Scholar
  37. Kokkoris G, Jansen VAA, Loreau M et al (2002) Variability in interaction strength and implications for biodiversity. J Anim Ecol 71:362–371CrossRefGoogle Scholar
  38. Kondoh M, Mougi A (2015) Interaction-type diversity hypothesis and interaction strength: the condition for the positive complexity-stability effect to arise. Popul Ecol. doi: 10.1007/s10144-014-0475-9
  39. Loh J, Green RE, Ricketts T et al (2005) The living planet index: using species population time series to track trends in biodiversity. Philos Trans R Soc B Biol Sci 360:289–295. doi: 10.1098/rstb.2004.1584 CrossRefGoogle Scholar
  40. May RM (1972) Will a large complex system be stable? Nature 238:413–414. doi: 10.1038/238413a0 CrossRefPubMedGoogle Scholar
  41. McCann K (2000) The diversity-stability debate. Nature 405:228–233CrossRefPubMedGoogle Scholar
  42. McCann K, Hastings A, Huxel GR (1998) Weak trophic interactions and the balance of nature. Nature 393:794–798CrossRefGoogle Scholar
  43. McConkey KR, Drake DR (2006) Flying foxes cease to function as seed dispersers long before they become rare. Ecology 87:271–276. doi: 10.1890/05-0386 CrossRefPubMedGoogle Scholar
  44. Melián CJ, Bascompte J, Jordano P, Krivan V (2009) Diversity in a complex ecological network with two interaction types. Oikos 118:122–130. doi: 10.1111/j.1600-0706.2008.16751.x
  45. Mougi A, Kondoh M (2012) Diversity of interaction types and ecological community stability. Science 337:349–351. doi: 10.1126/science.1220529 CrossRefPubMedGoogle Scholar
  46. Mougi A, Kondoh M (2014) Stability of competition–antagonism–mutualism hybrid community and the role of community network structure. J Theor Biol 360:54–58. doi: 10.1016/j.jtbi.2014.06.030 CrossRefPubMedGoogle Scholar
  47. Neutel A-M, Thorne MAS (2014) Interaction strengths in balanced carbon cycles and the absence of a relation between ecosystem complexity and stability. Ecol Lett 17:651–661. doi: 10.1111/ele.12266 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Neutel A-M, Heesterbeek JAP, de Ruiter PC (2002) Stability in real food webs: weak links in long loops. Science 296:1120–1123. doi: 10.1126/science.1068326 CrossRefPubMedGoogle Scholar
  49. Pereira HM, Leadley PW, Proença V et al (2010) Scenarios for global biodiversity in the 21st century. Science 330:1496–1501. doi: 10.1126/science.1196624 CrossRefPubMedGoogle Scholar
  50. Pimm SL, Jenkins CN, Abell R et al (2014) The biodiversity of species and their rates of extinction, distribution, and protection. Science 344:1246752. doi: 10.1126/science.1246752 CrossRefPubMedGoogle Scholar
  51. Redford K, Feinsinger P (2001) The half-empty forest: sustainable use and the ecology of interactions. In: Reynold D, Mace G, Redford K, Robinson J (eds) Conservation of exploited species. Cambridge University Press, UK, pp 370–399Google Scholar
  52. Ripple WJ, Estes JA, Beschta RL et al (2014) Status and ecological effects of the world’s largest carnivores. Science 343:1241484. doi: 10.1126/science.1241484 CrossRefPubMedGoogle Scholar
  53. Säterberg T, Sellman S, Ebenman B (2013) High frequency of functional extinctions in ecological networks. Nature 499:468–470. doi: 10.1038/nature12277 CrossRefPubMedGoogle Scholar
  54. Sauve AMC, Fontaine C, Thébault E (2014) Structure–stability relationships in networks combining mutualistic and antagonistic interactions. Oikos 123:378–384. doi: 10.1111/j.1600-0706.2013.00743.x CrossRefGoogle Scholar
  55. Sauve AMC, Fontaine C, Thébault E (2015) Stability of a diamond-shaped module with multiple interaction types. Theor Ecol. doi: 10.1007/s12080-015-0260-1 Google Scholar
  56. Schipper J, Chanson JS, Chiozza F et al (2008) The status of the world’s land and marine mammals: diversity, threat, and knowledge. Science 322:225–230. doi: 10.1126/science.1165115 CrossRefPubMedGoogle Scholar
  57. Sekercioğlu ÇH, Daily GC, Ehrlich PR (2004) Ecosystem consequences of bird declines. Proc Natl Acad Sci 101:18042–18047. doi: 10.1073/pnas.0408049101 CrossRefPubMedPubMedCentralGoogle Scholar
  58. Smith ADM, Brown CJ, Bulman CM et al (2011) Impacts of fishing low–trophic level species on marine ecosystems. Science 333:1147–1150. doi: 10.1126/science.1209395 CrossRefPubMedGoogle Scholar
  59. Soulé ME, Estes JA, Berger J, Del Rio CM (2003) Ecological effectiveness: conservation goals for interactive species. Conserv Biol 17:1238–1250. doi: 10.1046/j.1523-1739.2003.01599.x CrossRefGoogle Scholar
  60. Soulé ME, Estes JA, Miller B, Honnold DL (2005) Strongly interacting species: conservation policy, management, and ethics. Bioscience 55:168–176. doi: 10.1641/0006-3568(2005)055[0168:SISCPM]2.0.CO;2 CrossRefGoogle Scholar
  61. Stouffer DB, Bascompte J (2011) Compartmentalization increases food-web persistence. Proc Natl Acad Sci 108:3648–3652. doi: 10.1073/pnas.1014353108 CrossRefPubMedPubMedCentralGoogle Scholar
  62. Suweis S, Grilli J, Maritan A (2014) Disentangling the effect of hybrid interactions and of the constant effort hypothesis on ecological community stability. Oikos 123:525–532. doi: 10.1111/j.1600-0706.2013.00822.x CrossRefGoogle Scholar
  63. Tang S, Pawar S, Allesina S (2014) Correlation between interaction strengths drives stability in large ecological networks. Ecol Lett. doi: 10.1111/ele.12312 PubMedGoogle Scholar
  64. Thébault E, Huber V, Loreau M (2007) Cascading extinctions and ecosystem functioning: contrasting effects of diversity depending on food web structure. Oikos 116:163–173. doi: 10.1111/j.2006.0030-1299.15007.x CrossRefGoogle Scholar
  65. Therneau T, Atkinson B, Ripley B (2014) RPART: recursive partitioning and regression trees. R package version 4.1-8Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Stefan Sellman
    • 1
  • Torbjörn Säterberg
    • 1
  • Bo Ebenman
    • 1
    Email author
  1. 1.Department of Physics, Chemistry and Biology; Division of Theoretical BiologyLinköping UniversityLinköpingSweden

Personalised recommendations