The phylogenetic component of food web structure and intervality

Abstract

Despite the exceptional complexity formed by species and their interactions in ecological networks, such as food webs, regularities in the network structures are repeatedly demonstrated. The interactions are determined by the characteristics of a species. The characteristics are in turn determined by the species’ phylogenetic relationships, but also by factors not related to evolutionary history. Here, we test whether species’ phylogenetic relationships provides a significant proxy for food web intervality. We thereafter quantify the degree to which different species traits remain valuable predictors of food web structure after the baseline effect of species’ relatedness has been removed. We find that the phylogenetic relationships provide a significant background from which to estimate food web intervality and thereby structure. However, we also find that there is an important, non-negligible part of some traits, e.g., body size, in food webs that is not accounted for by the phylogenetic relationships. Additionally, both these relationships differ depending if a predator or a prey perspective is adopted. Clearly, species’ evolutionary history as well as traits not determined by phylogenetic relationships shapes predator-prey interactions in food webs, and the underlying evolutionary processes take place on slightly different time scales depending on the direction of predator-prey adaptations.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. Allesina S (2011) Predicting trophic relations in ecological networks: a test of the allometric diet breadth model. J Theor Biol 279(1):161–168

    Article  PubMed  Google Scholar 

  2. Allesina S, Alonso D, Pascual M (2008) A general model for food web structure. Science 320(5876):658–661

    CAS  Article  PubMed  Google Scholar 

  3. Bersier L, Kehrli P (2008) The signature of phylogenetic constraints on food web structure. Ecol Compl 5(2):132–139

    Article  Google Scholar 

  4. Blomberg S, Garland T, Ives A (2003) Testing for phylogenetic signal in comparative data: behavioral traits are more labile. Evolution 57(4):717–745

    Article  PubMed  Google Scholar 

  5. Briand F, Cohen JE (1984) Community food webs have scale-invariant structure. Nature 307:264–267

    Article  Google Scholar 

  6. Butler MA, Schoener TW, Losos JB (2000) The relationship between sexual size dimorphism and habitat use in greater antillean anolis lizards. Evolution 54(1):259–272

    CAS  PubMed  Google Scholar 

  7. Cadle JE, Greene HW (1993) Phylogenetic patterns, biogeography, and the ecological structure of neotropical assemblages. In: Ricklefs RE, Schluter D (eds) Species diversity in ecological communities: historical and geographical perspectives. University of Chicago Press, Chicago

  8. Cattin M, Bersier L, Banaṡek-Richter C, Baltensperger R, Gabriel J (2004) Phylogenetic constraints and adaptation explain food web structure. Nature 427(6977):835–839

    CAS  Article  PubMed  Google Scholar 

  9. Cavalli-Sforza L, Piazza A (1975) Analysis of evolution: evolutionary rates, independence and treeness. Theor Popul Biol 8(2):127–165

    CAS  Article  PubMed  Google Scholar 

  10. Cavender-Bares J, Kozak KH, Fine PVA, Kembel SW (2009) The merging of community ecology and phylogenetic biology. Ecol Lett 12(7):693–715

    Article  PubMed  Google Scholar 

  11. Christian R, Luczkovich J (1999) Organizing and understanding a winter’s seagrass foodweb network through effective trophic levels. Ecol Model 117(1):99–124

    Article  Google Scholar 

  12. Cohen J (1978) Food webs and niche space. 11. Princeton Univ Pr

  13. Cohen J, Newman C (1985) A stochastic theory of community food webs: I. models and aggregated data. Proc Roy Soc Lond B: Bio 224(1237):421–448

    Article  Google Scholar 

  14. Cohen J, Schittler D, Raffaelli D, Reuman D (2009) Food webs are more than the sum of their tritrophic parts. Proc Nat Acad Sci USA 106(52):22,335–22,340

    CAS  Article  Google Scholar 

  15. Cohen JE (1977) Food webs and the dimensionality of trophic niche space. Proc Natl Acad Sci 74(10):4533–4536

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. Eklöf A, Helmus MR, Moore M, Allesina S (2012) Relevance of evolutionary history for food web structure. Proc Roy Soc Lond B: Bio 279(1733):1588–1596

    Article  Google Scholar 

  17. Eklöf A, Jacob U, Kopp J, Bosch J, Castro-Urgal R, Chacoff N P, Dalsgaard B, Sassi C, Galetti M, Guimarães PR et al (2013) The dimensionality of ecological networks. Ecol Lett 16(5): 577–583

    Article  PubMed  Google Scholar 

  18. Emerson B, Gillespie R (2008) Phylogenetic analysis of community assembly and structure over space and time. Trends Ecol Evol 23(11):619–630

    Article  PubMed  Google Scholar 

  19. Felsenstein J (1985) Phylogenies and the comparative method. Am Nat 125(1):1–15

    Article  Google Scholar 

  20. Forbes SA (1887) The lake as a microcosm. Bull Sci Assoc, Peoria, pp 77–87

    Google Scholar 

  21. Gardner JL, Peters A, Kearney MR, Joseph L, Heinsohn R (2011) Declining body size: a third universal response to warming? Trends Ecol Evol 26(6):285–291

    Article  PubMed  Google Scholar 

  22. Garland T Jr, Ives AR (2000) Using the past to predict the present: Confidence intervals for regression equations in phylogenetic comparative methods. Am Nat 155(3):346–364

    Article  Google Scholar 

  23. Grafen A (1989) The phylogenetic regression. Philos Trans Roy Soc Lond B: Biol Sci 326(1233):119–157

    CAS  Article  Google Scholar 

  24. Hansen TF, Martins EP (1996) Translating between microevolutionary process and macroevolutionary patterns: the correlation structure of interspecific data. Evolution:1404–1417

  25. Helmus MR, Bland TJ, Williams CK, Ives AR (2007) Phylogenetic measures of biodiversity. Am Nat 169(3):E68–E83

    Article  PubMed  Google Scholar 

  26. Hutchinson G (1957) The multivariate niche. Cold Spr Harb Symp Quant Biol 22:415–421

    Article  Google Scholar 

  27. Jacob U (2005) Trophic dynamics of antarctic shelf ecosystems—food webs and energy flow budgets, thesis. University of Bremen, Germany

    Google Scholar 

  28. Jacob U, Thierry A, Brose U, Arntz W, Berg S, Brey T, Fetzer I, Jonsson T, Mintenbeck K, Mollmann C et al (2011) The role of body size in complex food webs: a cold case. Adv Ecol Res 45:181–223

    Article  Google Scholar 

  29. Köster FW, Trippel EA, Tomkiewicz J (2013) Linking size and age at sexual maturation to body growth, productivity and recruitment of Atlantic cod stocks spanning the north atlantic. Fish Res 138:52–61

    Article  Google Scholar 

  30. MacDonald N (1979) Simple aspects of foodweb complexity. J Theor Biol 80(4):577–588

    CAS  Article  PubMed  Google Scholar 

  31. Martinez ND (1992) Constant connectance in community food webs. Am Nat 139(6):1208–1218

    Article  Google Scholar 

  32. McGill BJ, Enquist BJ, Weiher E, Westoby M (2006) Rebuilding community ecology from functional traits. Trends Ecol Evol 21(4):178–185

    Article  PubMed  Google Scholar 

  33. Messier J, McGill BJ, Lechowicz MJ (2010) How do traits vary across ecological scales? A case for trait-based ecology. Ecol Lett 13(7):838–848

    Article  PubMed  Google Scholar 

  34. Naisbit RE, Rohr RP, Rossberg AG, Kehrli P, Bersier LF (2012) Phylogeny versus body size as determinants of food web structure. Proc Roy Soc Lond B: Bio rspb20120327

  35. Neubert MG, Blumenshine SC, Duplisea DE, Jonsson T, Rashleigh B (2000) Body size and food web structure: testing the equiprobability assumption of the cascade model. Oecologia 123:241–251

    Article  Google Scholar 

  36. Optiz S (1996) Trophic interactions in Caribbean coral reefs. Tech. Rep. 43. ICLARM, Manila

    Google Scholar 

  37. Paradis E, Claude J, Strimmer K (2004) APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20:289–290

    CAS  Article  PubMed  Google Scholar 

  38. Petchey O, Beckerman A, Riede J, Warren P (2008) Size, foraging, and food web structure. Proc Nat Acad Sci USA 105(11):4191–4196

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  39. Quinn GP, Keough MJ (2002) Experimental design and data analysis for biologists. Cambridge University Press, Cambridge

    Google Scholar 

  40. R Development Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.r-project.org

  41. Rao C (1965) Linear statistical inference and its applications. Wiley, New York

    Google Scholar 

  42. Rao C, Toutenberg H, Shalabh, Heumann C (2010) Linear Models and Generalizations. Springer, Berlin

    Google Scholar 

  43. Rezende EL, Albert EM, Fortuna MA, Bascompte J (2009) Compartments in a marine food web associated with phylogeny, body mass, and habitat structure. Ecol Lett 12(8):779–788

    Article  PubMed  Google Scholar 

  44. Riede J, Rall B, Banasek-Richter C, Navarrete S, Wieters E, Emmerson M, Jacob U, Brose U (2010) Scaling of food web properties with diversity and complexity across ecosystems. Adv Ecol Res 42:139–170

    Article  Google Scholar 

  45. Riede JO, Brose U, Ebenman B, Jacob U, Thompson R, Townsend CR, Jonsson T (2011) Stepping in eltons footprints: a general scaling model for body masses and trophic levels across ecosystems. Ecol Lett 14(2):169–178

    Article  PubMed  Google Scholar 

  46. Rohlf FJ (2001) Comparative methods for the analysis of continuous variables: geometric interpretations. Evolution 55(11):2143–2160

    CAS  Article  PubMed  Google Scholar 

  47. Rohlf FJ (2006) A comment on phylogenetic correction. Evolution 60(7):1509

    Article  PubMed  Google Scholar 

  48. Rohr RP, Scherer H, Kehrli P, Mazza C, Bersier LF (2010) Modeling food webs: exploring unexplained structure using latent traits. Am Nat 176(2):170–177

    Article  PubMed  Google Scholar 

  49. Rossberg A, Matsuda H, Amemiya T, Itoh K (2006) Food webs: experts consuming families of experts. J Theor Biol 241(3):552–563

    CAS  Article  PubMed  Google Scholar 

  50. Rossberg AG, Brännström Å, Dieckmann U (2010) food web structure in low-and high-dimensional trophic niche spaces. J R Soc Interface 7(53):1735–1743

    Article  PubMed  PubMed Central  Google Scholar 

  51. Sheridan JA, Bickford D (2011) Shrinking body size as an ecological response to climate change. Nat Clim Chang 1(8):401–406

    Article  Google Scholar 

  52. Sokal RR, Rohlf FJ (1962) The comparison of dendrograms by objective methods. Taxon 11(2):33–40

    Article  Google Scholar 

  53. Stouffer D, Camacho J, Amaral L (2006) A robust measure of food web intervality. Proc Nat Acad Sci USA 103(50):19,015–19,020

    CAS  Article  Google Scholar 

  54. Stouffer D, Rezende E, Amaral L (2011) The role of body mass in diet contiguity and food web structure. J Anim Ecol 80(3):632–639

    Article  PubMed  PubMed Central  Google Scholar 

  55. Stouffer DB, Camacho J, Guimerà R, Ng CA, Amaral LAN (2005) Quantitative patterns in the structure of model and empirical food webs. Ecology 86:1301–1311

    Article  Google Scholar 

  56. Stouffer DB, Sales-Pardo M, Sirer MI, Bascompte J (2012) Evolutionary conservation of species’ roles in food webs. Science 335(6075):1489–1492

    CAS  Article  PubMed  Google Scholar 

  57. Sugihara G (1982) Niche hierarchy: Structure, organization, and assembly in natural communities. PhD thesis. Princeton University, Princeton

  58. Sugihara G (1984) Graph theory, homology, and food webs. In: Levin SA (ed) Population biology, American Mathematical Society, vol 30. Proceedings of Symposia in Applied Mathematics, Providence, pp 83–101

  59. Thompson J (1994) The coevolutionary process. University of Chicago Press, Chicago

    Google Scholar 

  60. Vamosi JC, Vamosi SM (2007) Body size, rarity, and phylogenetic community structure: insights from diving beetle assemblages of Alberta. Divers Distrib 13(1):1–10

    Google Scholar 

  61. Warren PH, Lawton JH (1987) Invertebrate predator-prey body size relationships: an explanation for upper triangular food webs and patterns in food web structure? Oecologia 74:231–235

    Article  Google Scholar 

  62. Williams R, Martinez N (2000) Simple rules yield complex food webs. Nature 404(6774):180–183

    CAS  Article  PubMed  Google Scholar 

  63. Zook A, Eklöf A, Jacob U, Allesina S (2011) Food webs: ordering species according to body size yields high degree of intervality. J Theor Biol 271(1):106–113

    Article  PubMed  Google Scholar 

  64. Zuur A, Ieno EN, Walker N, Saveiliev AA, Smith GM (2009) Mixed Effects Models and Extensions in Ecology with R. Springer, New York

    Google Scholar 

Download references

Acknowledgments

AE acknowledges the support of Swedish Research Council Grant for Young Researchers. DBS acknowledges a Marsden Fund Fast-Start grant (UOC-1101) and Rutherford Discovery Fellowship, both administered by the Royal Society of New Zealand. The authors also thank Ute Jacob for agreeing to share the trait data.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Anna Eklöf.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 127 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Eklöf, A., Stouffer, D.B. The phylogenetic component of food web structure and intervality. Theor Ecol 9, 107–115 (2016). https://doi.org/10.1007/s12080-015-0273-9

Download citation

Keywords

  • Ecological networks
  • Food web
  • Intervality
  • Phylogenetic correction
  • Taxonomy
  • Traits