Theoretical Ecology

, Volume 8, Issue 1, pp 133–148 | Cite as

Resource availability determines stability for mutualist–pathogen–host interactions

  • Megan A. Rúa
  • James Umbanhowar


Traditional explorations of interspecific interactions have generated extensive bodies of theory on mutualism and disease independently, but few studies have considered the interaction between them. We developed a model exploring the interactions among a fungal mutualist, a viral pathogen, and their shared plant host. Both microbes were assumed to alter the uptake and use of nutrients by the plant. We found that the productivity of the system and the strength of the plant–fungal mutualism influenced community dynamics. In particular, at low productivity, the pathogen may depend on the presence of the fungal mutualist for persistence. Furthermore, under some conditions, both the productivity of the system and the strength of the plant–fungal mutualism may simultaneously cause the mutualist to go extinct. We note the presence of cyclic plant–pathogen population dynamics only in the presence of the mutualist. As found in other models of consumer–resource interactions, cyclic dynamics were driven by high productivity, but, in contrast to simpler systems, high pathogen effectiveness did not consistently lead to cyclic dynamics. In total, association with mutualists can alter host–pathogen interactions, and the reverse is also true in that pathogens may alter host–mutualist interactions.


Viruses Population dynamics Mutualism Arbuscular mycorrhizae 



We would like to the Mitchell Lab, Jason Hoeksema, Bridget Piculell, and Ann Rasmussen for discussions. We thank Shuijin Hu at North Carolina State University for mycorrhizal inoculum. This research was partially supported by a National Science Foundation (NSF) Graduate Research Fellowship to M.A.R. and a NSF Postdoctoral Research Fellowship in Biology under Grant No. DBI-12-02676 to M.A.R.


  1. Agrios GN (2004) Plant pathology, 5th edn. Academic, San DiegoGoogle Scholar
  2. Alexander HM (2010) Disease in natural plant populations, communities, and ecosystems: insights into ecological and evolutionary processes. Plant Dis 94(5):492–503. doi: 10.1094/PDIS-94-5-0492 CrossRefGoogle Scholar
  3. Anderson PK, Cunningham AA, Patel NG, Morales FJ, Epstein PR, Daszak P (2004) Emerging infectious diseases of plants: pathogen pollution, climate change and agrotechnology drivers. Trends Ecol Evol 19(10):535–544CrossRefPubMedGoogle Scholar
  4. Barrett LG, Kniskern JM, Bodenhausen N, Zhang W, Bergelson J (2009) Continua of specificity and virulence in plant host-pathogen interactions: causes and consequences. New Phytol 183(3):513–529. doi: 10.1111/j.1469-8137.2009.02927.x CrossRefPubMedGoogle Scholar
  5. Bennett A (2010) The role of soil community biodiversity in insect biodiversity. Insect Conserv Divers 3(3):157–171. doi: 10.1111/j.1752-4598.2010.00086.x Google Scholar
  6. Bennett AE, Alers-Garcia J, Bever JD (2006) Three-way interactions among mutualistic mycorrhizal fungi, plants, and plant enemies: hypotheses and synthesis. Am Nat 167(2):141–152CrossRefPubMedGoogle Scholar
  7. Bever JD (2003) Soil community feedback and the coexistence of competitors: conceptual frameworks and empirical tests. New Phytol 157:465–473CrossRefGoogle Scholar
  8. Bever JD, Richardson SC, Lawrence BM, Holmes J, Watson M (2008) Preferential allocation to beneficial symbiont with spatial structure maintains mycorrhizal mutualism. Ecol Lett 12:13–21. doi: 10.1111/j.1461-0248.2008.01254.x CrossRefPubMedGoogle Scholar
  9. Bezemer TM, van Dam NM (2005) Linking aboveground and belowground interactions via induced plant defenses. Trends Ecol Evol 20(11):617–624CrossRefPubMedGoogle Scholar
  10. Borer ET, Seabloom EW, Mitchell CE, Power AG (2010) Local context drives infection of grasses by vector-borne generalist viruses. Ecol Lett 13(7):810–818CrossRefPubMedGoogle Scholar
  11. Borowicz VA (2001) Do arbuscular mycorrhizal fungi alter plant–pathogen relations? Ecology 82(11):3057–3068Google Scholar
  12. Boza G, Kun A, Scheuring I, Dieckmann U (2012) Strategy diversity stabilizes mutualism through investment cycles, phase polymorphism, and spatial bubbles. PLoS Comput Biol 8(11):e1002660CrossRefPubMedPubMedCentralGoogle Scholar
  13. Bronstein JL (2001) The exploitation of mutualisms. Ecol Lett 4(3):277–287. doi: 10.1046/j.1461-0248.2001.00218.x CrossRefGoogle Scholar
  14. Bronstein JL, Barbosa P (2002) Multitrophic/multispecies mutualistic interactions: the role of non-mutualists in shaping and mediating mutualisms. In: Tscharntke T, Hawkins BA (eds) Multitrophic level interactions. Cambridge University Press, West Nyack. doi: 10.1017/CBO9780511542190.003 Google Scholar
  15. Bruno JF, Stachowicz JJ, Bertness MD (2003) Inclusion of facilitation into ecological theory. Trends Ecol Evol 18(3):119–125CrossRefGoogle Scholar
  16. Bryla D, Eissenstat D (2005) Respiratory costs of mycorrhizal associations. In: Lambers H, Ribas-Carbo M (eds) Plant respiration: from cell to ecosystem. Kluwer, Dordrecht, pp 207–224CrossRefGoogle Scholar
  17. Clasen JL, Elser JJ (2007) The effect of host Chlorella NC64A carbon : phosphorus ratio on the production of Paramecium bursaria Chlorella virus-1. Freshw Biol 52(1):112–122CrossRefGoogle Scholar
  18. Cronin JP, Welsh ME, Dekkers MG, Abercrombie ST, Mitchell CE (2010) Host physiological phenotype explains key epidemiological parameters. Ecol Lett 13(10):1221–1232CrossRefPubMedGoogle Scholar
  19. Daft MJ, Okusanya BO (1973) Effect of endogone mycorrhiza on plant growth. V. Influence of infection on the multiplication of viruses in tomato, petunia and strawberry. New Phytol 72(5):975–983CrossRefGoogle Scholar
  20. D’Arcy C (1995) Symptomatology and host range of barley yellow dwarf. In: D’Arcy C, Burnett PA (eds) Barley yellow dwarf: 40 years of progress. APS Press, St. Paul MN, pp 9–28Google Scholar
  21. Doedel EJ, Champney AR, Fairgrieve TF, Kuznetsov YA, Sandstede B, Wang X (1997) AUTO 97: Continuation and bifurcation software for ordinary differential equations (with HomCont)Google Scholar
  22. Eweida M, Oxelfelt P, Tomenius K (1988) Concentration of virus and ultrastructural changes in oats at various stages of barley yellow dwarf virus infection. Ann Appl Biol 112(2):313–321CrossRefGoogle Scholar
  23. Farr DF, Bills GF, Chamuris GP, Rossman AY (1989) Fungi on plants and plant products in the United States. APS Press, St PaulGoogle Scholar
  24. Ferriere R, Bronstein JL, Rinaldi S, Law R, Gauduchon M (2002) Cheating and the evolutionary stability of mutualisms. Proc R Soc Lond Ser B Biol Sci 269(1493):773–780. doi: 10.1098/rspb.2001.1900 CrossRefGoogle Scholar
  25. Fredeen AL, Field CB (1995) Contrasting leaf and ‘ecosystem’ CO2 and H2O exchange in Avena fatua monoculture: growth at ambient and elevated CO2. Photosynth Res 43(3):263–271CrossRefPubMedGoogle Scholar
  26. Friesen ML, Porter SS, Stark SC, von Wettberg EJ, Sachs JL, Martinez-Romero E (2011) Microbially mediated plant functional traits. Annu Rev Ecol Evol Syst 42(1):23–46. doi: 10.1146/annurev-ecolsys-102710-145039 CrossRefGoogle Scholar
  27. Galassi Mea Gnu Scientific library reference manual (3rd edition)Google Scholar
  28. Gehring C, Bennett A (2009) Mycorrhizal fungal-plant-insect interactions: the importance of a community approach. Environ Entomol 38(1):93–102. doi: 10.1603/022.038.0111 CrossRefPubMedGoogle Scholar
  29. Gehring CA, Whitham TG (2002) Mycorrhiza–herbivore interactions: population and community consequences. In: van der Heijden M, Sanders I (eds) Mycorrhizal ecology. Springer, New York, pp 295–320CrossRefGoogle Scholar
  30. Grman E, Robinson TMP, Klausmeier CA (2012) Ecological specialization and trade affect the outcome of negotiations in mutualism. Am Nat 179(5):567–581. doi: 10.1086/665006 CrossRefPubMedGoogle Scholar
  31. Halbert SE, Voegtlin DJ (1995) Biology and taxonomy of vectors of barley yellow dwarf virus. In: D’Arcy C, Burnett PA (eds) Barley yellow dwarf: 40 years of progress. APS Press, St. Paul, pp 217–256Google Scholar
  32. Hartley SE, Gange AC (2009) Impacts of plant symbiotic fungi on insect herbivores: mutualism in a multitrophic context. Annu Rev Entomol 54:323–342. doi: 10.1146/annurev.ento.54.110807.090614 CrossRefPubMedGoogle Scholar
  33. Hu S, Wu J, Burkey KO, Firestone MK (2005) Plant and microbial N acquisition under elevated atmospheric CO2 in two mesocosm experiments with annual grasses. Glob Chang Biol 11(2):213–223. doi: 10.1111/j.1365-2486.2005.00905.x CrossRefGoogle Scholar
  34. Irwin ME, Thresh JM (1990) Epidemiology of barley yellow dwarf—a study in ecological complexity. Annu Rev Phytopathol 28:393–424CrossRefGoogle Scholar
  35. Jakobsen I, Rosendahl L (1990) Carbon flow into soil and external hyphae from roots of mycorrhizal cucumber plants. New Phytol 115(1):77–83. doi: 10.1111/j.1469-8137.1990.tb00924.x CrossRefGoogle Scholar
  36. Johnson N, Graham J (2012) The continuum concept remains a useful framework for studying mycorrhizal functioning. Plant Soil 363(1–2):411–419. doi: 10.1007/s11104-012-1406-1 Google Scholar
  37. Johnson NC, Graham JH, Smith FA (1997) Functioning of mycorrhizal associations along the mutualism–parasitism continuum. New Phytol 135(4):575–585CrossRefGoogle Scholar
  38. Kardol P, Campany CE, Souza L, Norby RJ, Weltzin JF, Classen AT (2010) Climate change effects on plant biomass alter dominance patterns and community evenness in an experimental old-field ecosystem. Glob Chang Biol 16(10):2676–2687. doi: 10.1111/j.1365-2486.2010.02162.x CrossRefGoogle Scholar
  39. Kiers ET, Duhamel M, Beesetty Y, Mensah JA, Franken O, Verbruggen E, Fellbaum CR, Kowalchuk GA, Hart MM, Bago A, Palmer TM, West SA, Vandenkoornhuyse P, Jansa J, Bücking H (2011) Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis. Science 333(6044):880–882. doi: 10.1126/science.1208473 CrossRefPubMedGoogle Scholar
  40. Klironomos JN (2002) Feedback with soil biota contributes to plant rarity and invasiveness in communities. Nature 417(6884):67–70CrossRefPubMedGoogle Scholar
  41. Kolb FL, Cooper NK, Hewings AD, Bauske EM, Teyker RH (1991) Effects of barley yellow dwarf virus on root-growth in spring oat. Plant Dis 75(2):143–145CrossRefGoogle Scholar
  42. Koske RE, Gemma JN (1989) A modified procedure for staining roots to detect VA mycorrhizas. Mycol Res 92(4):486–488CrossRefGoogle Scholar
  43. Little A, Currie C (2009) Parasites may help stabilize cooperative relationships. BMC Evol Biol 9(1):124CrossRefPubMedPubMedCentralGoogle Scholar
  44. Luck RF (1990) Evaluation of natural enemies for biological control, a behavioral approach. Trends Ecol Evol 5:196–199CrossRefGoogle Scholar
  45. Malmstrom CM, Hughes CC, Newton LA, Stoner CJ (2005a) Virus infection in remnant native bunchgrasses from invaded California grasslands. New Phytol 168(1):217–230CrossRefPubMedGoogle Scholar
  46. Malmstrom CM, McCullough AJ, Johnson HA, Newton LA, Borer ET (2005b) Invasive annual grasses indirectly increase virus incidence in California native perennial bunchgrasses. Oecologia 145(1):153–164CrossRefPubMedGoogle Scholar
  47. McGonigle TP, Miller MH, Evans DG, Fairchild GL, Swan JA (1990) A new method which gives an objective measure of colonization of roots by vesicular–arbuscular mycorrhizal fungi. New Phytol 115(3):495–501CrossRefGoogle Scholar
  48. Mitchell CE, Power AG (2006) Disease dynamics in plant communities. In: Collinge SK, Ray C (eds) Disease ecology: Community structure and pathogen dynamics. Oxford University Press, Oxford, pp 58–72CrossRefGoogle Scholar
  49. Molofsky J, Bever JD, Antonovics J (2001) Coexistence under positive frequency dependence. Proc R Soc Lond Ser B Biol Sci 268(1464):273–277. doi: 10.1098/rspb.2000.1355 CrossRefGoogle Scholar
  50. Moon DC, Barnouti J, Younginger B (2013) Context-dependent effects of mycorrhizae on herbivore density and parasitism in a tritrophic coastal study system. Ecol Entomol 38(1):31–39. doi: 10.1111/j.1365-2311.2012.01399.x CrossRefGoogle Scholar
  51. Morris WF, Bronstein JL, Wilson WG (2003) Three-way coexistence in obligate mutualist–exploiter interactions: the potential role of competition. Am Nat 161:16CrossRefGoogle Scholar
  52. Morris WF, Hufbauer RA, Agrawal AA, Bever JD, Borowicz VA, Gilbert GS, Maron JL, Mitchell CE, Parker IM, Power AG, Torchin ME, Vazquez DP (2007) Direct and interactive effects of enemies and mutualists on plant performance: a meta-analysis. Ecology 88(4):1021–1029CrossRefPubMedGoogle Scholar
  53. Mougi A, Kondoh M (2012) Diversity of Interaction Types and Ecological Community Stability. Science 337(6092):349–351. doi: 10.1126/science.1220529
  54. Newman EI, Ritz K (1986) Evidence on the pathways of phosphorous transfer between vesicular–arbuscular mycorrhizal plants. New Phytol 104(1):77–87. doi: 10.1111/j.1469-8137.1986.tb00635.x CrossRefGoogle Scholar
  55. Pineda A, Dicke M, Pieterse CMJ, Pozo MJ (2013) Beneficial microbes in a changing environment: are they always helping plants to deal with insects? Funct Ecol 27(3):574–586. doi: 10.1111/1365-2435.12050 CrossRefGoogle Scholar
  56. Rillig MC (2006) Climate change effects on fungi in agroecosystems. In: Newton PCD, Carran RA, Edwards GR, Niklaus PA (eds) Agroecosystems in a changing climate. CRC Press, Boca Raton pp 211–230Google Scholar
  57. Roossinck MJ (2011) The good viruses: viral mutualistic symbioses. Nat Rev Microbiol 9(2):99–108CrossRefPubMedGoogle Scholar
  58. Rosenzweig ML (1971) Paradox of enrichment: destabilization of exploitation ecosystems in ecological time. Science 171(3969):385–387CrossRefPubMedGoogle Scholar
  59. Rosenzweig ML, MacArthur RH (1963) Graphical representation and stability conditions of predator–prey interactions. Am Nat 97(895):209. doi: 10.1086/282272 CrossRefGoogle Scholar
  60. Rúa MA, Pollina EC, Power AG, Mitchell CE (2011) The role of viruses in biological invasions: friend or foe? Curr Opin Virol 1(1):68–72CrossRefPubMedGoogle Scholar
  61. Rúa MA, McCulley RL, Mitchell CE (2013a) Fungal endophyte infection and host genetic background jointly modulate host response to an aphid-transmitted viral pathogen. J Ecol 101(4):1007–1018. doi: 10.1111/1365-2745.12106 CrossRefGoogle Scholar
  62. Rúa MA, Umbanhowar J, Hu S, Burkey KO, Mitchell CE (2013b) Elevated CO2 spurs reciprocal positive effects between a plant virus and an arbuscular mycorrhizal fungus. New Phytol 199(2):541–549CrossRefPubMedGoogle Scholar
  63. Schonbeck F (1979) Endomycorrhizas in relation to plant diseases. In: Schippers B, Gams W (eds) Soil-borne plant pathogens. International Symposium on Factors Determining the Behavior of Plant Pathogens in Soil: International Congress of Plant Pathology : Munich, Germany. Academic, London, pp 271–280Google Scholar
  64. Schultz PA, Michael Miller R, Jastrow JD, Rivetta CV, Bever JD (2001) Evidence of a mycorrhizal mechanism for the adaptation of Andropogon gerardii (Poaceae) to high- and low-nutrient prairies. Am J Bot 88(9):1650–1656CrossRefPubMedGoogle Scholar
  65. Smith SE, Read D (2008) Mycorrhizal symbiosis, 3rd edn. Elsevier, LondonGoogle Scholar
  66. Soetaert K, Petzoldt T, Setzer RW (2011) General solvers for initial value problems of ordinary differential equations (ODE), partial differential equations (PDE), differential algebraic equations (DAE), and delay differential equations (DDE)Google Scholar
  67. Staddon PL, Ramsey CB, Ostle N, Ineson P, Fitter AH (2003) Rapid turnover of hyphae of mycorrhizal fungi determined by AMS microanalysis of 14C. Science 300(5622):1138CrossRefPubMedGoogle Scholar
  68. Strauss SY, Irwin RE (2004) Ecological and evolutionary consequences of multispecies plant–animal interactions. Annu Rev Ecol Evol Syst 35:435–466. doi: 10.1146/annurev.ecolsys.35.112202.130215 CrossRefGoogle Scholar
  69. Suding KN, Stanley Harpole W, Fukami T, Kulmatiski A, MacDougall AS, Stein C, van der Putten WH (2013) Consequences of plant–soil feedbacks in invasion. J Ecol 101(2):298–308. doi: 10.1111/1365-2745.12057 CrossRefGoogle Scholar
  70. Tang JJ, Chen J, Chen X (2006) Response of 12 weedy species to elevated CO2 in low-phosphorus-availability soil. Ecol Res 21(5):664–670CrossRefGoogle Scholar
  71. Umbanhowar J, McCann K (2005) Simple rules for the coexistence and competitive dominance of plants mediated by mycorrhizal fungi. Ecol Lett 8(3):247–252CrossRefGoogle Scholar
  72. van Dam NM, Heil M (2011) Multitrophic interactions below and above ground: en route to the next level. J Ecol 99(1):77–88. doi: 10.1111/j.1365-2745.2010.01761.x CrossRefGoogle Scholar
  73. Van Der Putten WH (2009) A multitrophic perspective on functioning and evolution of facilitation in plant communities. J Ecol 97(6):1131–1138. doi: 10.1111/j.1365-2745.2009.01561.x CrossRefGoogle Scholar
  74. van der Putten WH, Bardgett RD, Bever JD, Bezemer TM, Casper BB, Fukami T, Kardol P, Klironomos JN, Kulmatiski A, Schweitzer JA, Suding KN, Van de Voorde TFJ, Wardle DA (2013) Plant–soil feedbacks: the past, the present and future challenges. J Ecol 101(2):265–276. doi: 10.1111/1365-2745.12054 CrossRefGoogle Scholar
  75. Vannette RL, Rasmann S (2012) Arbuscular mycorrhizal fungi mediate below-ground plant–herbivore interactions: a phylogenetic study. Funct Ecol 26(5):1033–1042. doi: 10.1111/j.1365-2435.2012.02046.x CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Curriculum for the Environment and EcologyUniversity of North Carolina at Chapel HillChapel HillUSA
  2. 2.Department of BiologyUniversity of North Carolina at Chapel HillChapel HillUSA
  3. 3.219 Shoemaker Hall, Department of BiologyUniversity of MississippiUniversityUSA

Personalised recommendations