Skip to main content

Advertisement

Log in

Distinguishing intrinsic limit cycles from forced oscillations in ecological time series

  • ORIGINAL PAPER
  • Published:
Theoretical Ecology Aims and scope Submit manuscript

Abstract

Ecological cycles are ubiquitous in nature and have triggered ecologists’ interests for decades. Deciding whether a cyclic ecological variable, such as population density, is part of an intrinsically emerging limit cycle or simply driven by a varying environment is still an unresolved issue, particularly when the only available information is in the form of a recorded time series. We investigate the possibility of discerning intrinsic limit cycles from oscillations forced by a cyclic environment based on a single time series. We argue that such a distinction is possible because of the fundamentally different effects that perturbations have on the focal system in these two cases. Using a set of generic mathematical models, we show that random perturbations leave characteristic signatures on the power spectrum and autocovariance that differ between limit cycles and forced oscillations. We quantify these differences through two summary variables and demonstrate their predictive power using numerical simulations. Our work demonstrates that random perturbations of ecological cycles can give valuable insight into the underlying deterministic dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abbott KC, Ripa J, Ives A R (2009) Environmental variation in ecological communities and inferences from single-species data. Ecology 90:1268–1278

    Article  PubMed  Google Scholar 

  • Alpaydin E (2004) Introduction to machine learning. MIT Press

  • Becks L, Hilker FM, Malchow H, Jurgens K, Arndt H (2005) Experimental demonstration of chaos in a microbial food web. Nature 435:1226–1229

    Article  PubMed  CAS  Google Scholar 

  • Beninca E, Huisman J, Heerkloss R, Johnk KD, Branco P, Van Nes EH, Scheffer M, Ellner SP (2008) Chaos in a long-term experiment with a plankton community. Nature 451:822–825

    Article  PubMed  CAS  Google Scholar 

  • Berryman A (ed) (2002) Population cycles: the case for trophic interactions. Oxford University Press

  • Bjørnstad ON, Grenfell BT (2001) Noisy clockwork: time series analysis of population fluctuations in animals. Science 293:638–643

    Article  PubMed  Google Scholar 

  • Brown CD, Davis HT (2006) Receiver operating characteristics curves and related decision measures: a tutorial. Chemometr Intell Lab Syst 80:24–38

    Article  CAS  Google Scholar 

  • Bulmer MG (1974) A statistical analysis of the 10-year cycle in canada. J Anim Ecol 43:701–718

    Article  Google Scholar 

  • Burgers G (1999) The El Niño stochastic oscillator. Clim Dyn 15:521–531

    Article  Google Scholar 

  • Cencini M, Falcioni M, Olbrich E, Kantz H, Vulpiani A (2000) Chaos or noise: Difficulties of a distinction. Phys Rev E 62:427–437

    Article  CAS  Google Scholar 

  • D’Agostino RB, Belanger A, D’Agostino RB (1990) A suggestion for using powerful and informative tests of normality. Am Stat 44:316–321

    Google Scholar 

  • Dakos V, Benincà E, van Nes EH, Philippart CJM, Scheffer M, Huisman J (2009) Interannual variability in species composition explained as seasonally entrained chaos. Proc R Soc B: Biol Sci 276:2871–2880

    Article  Google Scholar 

  • Demir A, Mehrotra A, Roychowdhury J (2000) Phase noise in oscillators: a unifying theory and numerical methods for characterization. IEEE Trans Circ Syst I Fund Theor Appl 47:655–674

    Article  Google Scholar 

  • Dudoit S, Fridlyand J, Speed TP (2002) Comparison of discrimination methods for the classification of tumors using gene expression data. J Am Stat Assoc 97:77–87

    Article  CAS  Google Scholar 

  • Dwyer G, Dushoff J, Yee SH (2004) The combined effects of pathogens and predators on insect outbreaks. Nature 430:341–345

    Article  PubMed  CAS  Google Scholar 

  • Elderd BD, Rehill BJ, Haynes KJ, Dwyer G (2013) Induced plant defenses, host–pathogen interactions, and forest insect outbreaks. Proc Natl Acad Sci USA 110:14,978–14,983

    Article  CAS  Google Scholar 

  • Ellner S, Turchin P (1995) Chaos in a noisy world: New methods and evidence from time-series analysis. Am Nat 145:343–375

    Article  Google Scholar 

  • Elton CS (1924) Periodic fluctuations in the numbers of animals: their causes and effects. J Exp Biol 2:119–163

    Google Scholar 

  • Elton C, Nicholson M (1942) The ten-year cycle in numbers of the lynx in Canada. J Anim Ecol 11:215–244

    Article  Google Scholar 

  • Environment Canada (2013) Hourly temperature report, Station Vancouver Harbour CS. http://climate.weather.gc.ca, 17 January 2014

  • Fradkin D, Muchnik I (2006) Support vector machines for classification. DIMACS Ser Discret Math Theor Comput Sci 70:13–20. Citeseer

    Google Scholar 

  • Fussmann GF, Ellner SP, Shertzer KW, Hairston N G (2000) Crossing the Hopf bifurcation in a live predator-prey system. Science 290:1358–1360

    Article  PubMed  CAS  Google Scholar 

  • García-Comas C, Stemmann L, Ibanez F, Berline L, Mazzocchi MG, Gasparini S, Picheral M, Gorsky G (2011) Zooplankton long-term changes in the NW Mediterranean Sea: Decadal periodicity forced by winter hydrographic conditions related to large-scale atmospheric changes? J Mar Syst 87:216–226

    Article  Google Scholar 

  • Gilg O, Hanski I, Sittler B (2003) Cyclic dynamics in a simple vertebrate predator-prey community. Science 302:866–868

    Article  PubMed  CAS  Google Scholar 

  • Greenhalgh D (1997) Hopf bifurcation in epidemic models with a latent period and nonpermanent immunity. Math Comput Model 25:85–107

    Article  Google Scholar 

  • Grover J, McKee D, Young S, Godfray H, Turchin P (2000) Periodic dynamics in Daphnia populations: Biological interactions and external forcing. Ecology 81:2781–2798

    Article  Google Scholar 

  • Guckenheimer J, Holmes P (1985) Nonlinear oscillations, dynamical systems, and bifurcations of vector fields. Springer

  • Halley JM (1996) Ecology, evolution and 1/f-noise. Trends Ecol Evol 11:33–37

    Article  PubMed  CAS  Google Scholar 

  • Halley JM, Inchausti P (2004) The increasing importance of 1/f-noises as models of ecological variability. Fluct Noise Lett 4:R1–R26

    Article  Google Scholar 

  • Hammer Ø (2007) Spectral analysis of a plio-pleistocene multispecies time series using the mantel periodogram. Palaeogeogr Palaeoclimatol Palaeoecol 243:373–377

    Article  Google Scholar 

  • Hastings A, Hom CL, Ellner S, Turchin P, Godfray HCJ (1993) Chaos in ecology: is mother nature a strange attractor? Annu Rev Ecol Syst 24:1–33

    Google Scholar 

  • Horne JH, Baliunas SL (1986) A prescription for period analysis of unevenly sampled time series. Astrophys J 302:757–763

    Article  Google Scholar 

  • Hosmer D (2013) Applied logistic regression. Wiley, Sturdivant R

  • Hunter MD, Price PW (1998) Cycles in insect populations: Delayed density dependence or exogenous driving variables? Ecol Entomol 23:216–222

    Article  Google Scholar 

  • Kaitala V, Ranta E, Lindström J (1996) Cyclic population dynamics and random perturbations. J Anim Ecol 65:249–251

    Article  Google Scholar 

  • Keeling MJ, Rohani P, Grenfell BT (2001) Seasonally forced disease dynamics explored as switching between attractors. Phys D 148:317–335

    Article  Google Scholar 

  • Kendall BE (2001) Cycles, chaos, and noise in predator–prey dynamics. Chaos, Solitons Fractals 12:321–332

    Article  Google Scholar 

  • Kendall BE, Briggs CJ, Murdoch WW, Turchin P, Ellner SP, McCauley E, Nisbet RM, Wood SN (1999) Why do populations cycle? A synthesis of statistical and mechanistic modeling approaches. Ecology 80:1789–1805

    Article  Google Scholar 

  • Kendall BE, Prendergast J, Bjørnstad ON (1998) The macroecology of population dynamics: Taxonomic and biogeographic patterns in population cycles. Ecol Lett 1:160–164

    Article  Google Scholar 

  • Klvana I, Berteaux D, Cazelles B (2004) Porcupine feeding scars and climatic data show ecosystem effects of the solar cycle. Am Nat 164:283–297

    Article  PubMed  Google Scholar 

  • Krebs CJ, Boonstra R, Boutin S, Sinclair AR (2001) What drives the 10-year cycle of snowshoe hares? Bioscience 51:25–35

    Article  Google Scholar 

  • Kroese D, Taimre T, Botev Z (2011) Handbook of Monte Carlo methods. Wiley Series in Probability and Statistics, Wiley

  • Levy D, Wood C (1992) Review of proposed mechanisms for sockeye salmon population cycles in the Fraser River. Bull Math Biol 54:241–261

    Article  Google Scholar 

  • London WP, Yorke JA (1973) Recurrent outbreaks of measles, chickenpox and mumps I. Seasonal variation in contact rates. Am J Epidemiol 98:453–468

    PubMed  CAS  Google Scholar 

  • May RM (1972) Limit cycles in predator-prey communities. Science 177:900–902

    Article  PubMed  CAS  Google Scholar 

  • McLachlan GJ (2004) Discriminant analysis and statistical pattern recognition. Wiley Interscience

  • Myers JH, Cory JS (2013) Population cycles in forest lepidoptera revisited. Annu Rev Ecol Evol Syst 44:26.1–26.28

    Article  Google Scholar 

  • NCAR CAS National Centre for Atmospheric Research (2007) Niño 3.4 index. http://www.cgd.ucar.edu/cas/catalog/climind/TNI_N34/index.html, 15 January 2014

  • NERC Centre for Population Biology (2010) The global population dynamics database version 2. Online database available at: http://www3.imperial.ac.uk/cpb/databases/gpdd, 15 January 2014

  • Nisbet R, Gurney W (2004) Modelling fluctuating populations. Blackburn Press

  • Pepe M (2004) The statistical evaluation of medical tests for classification and prediction. Oxford statistical science series. Oxford University Press

  • Pineda-Krch M, J Blok H, Dieckmann U, Doebeli M (2007) A tale of two cycles–distinguishing quasi-cycles and limit cycles in finite predator–prey populations. Oikos 116:53–64

    Article  Google Scholar 

  • Platt T, Denman KL (1975) Spectral analysis in ecology. Annu Rev Ecol Syst 6:189–210

    Article  Google Scholar 

  • Pujo-Menjouet L, Mackey MC (2004) Contribution to the study of periodic chronic myelogenous leukemia. C R Biol 327:235–244

    Article  PubMed  Google Scholar 

  • Ricker WE (1997) Cycles of abundance among Fraser River sockeye salmon (Oncorhynchus nerka). Can J Fish Aquat Sci 54:950–968

    Article  Google Scholar 

  • Rosenzweig ML, MacArthur RH (1963) Graphical representation and stability conditions of predator-prey interactions. Am Nat 97:209–223

    Article  Google Scholar 

  • Royama T (1992) Analytical population dynamics. Population and community biology series. Springer

  • Scargle JD (1982) Studies in astronomical time series analysis. II. Statistical aspects of spectral analysis of unevenly spaced data. Astrophys J 263:835–853

    Article  Google Scholar 

  • Schetzen M (2003) Linear time-invariant systems. Wiley

  • Sinclair AR, Gosline JM, Holdsworth G, Krebs CJ, Boutin S, Smith JN, Boonstra R, Dale M (1993) Can the solar cycle and climate synchronize the snowshoe hare cycle in Canada? Evidence from tree rings and ice cores. Am Nat:173–198

  • Soper H (1929) The interpretation of periodicity in disease prevalence. J R Stat Soc 92:34–73

    Article  Google Scholar 

  • Steele JH (1985) A comparison of terrestrial and marine ecological systems. Nature 313:355–358

    Article  Google Scholar 

  • Stenseth NC, Mysterud A, Ottersen G, Hurrell JW, Chan KS, Lima M (2002) Ecological effects of climate fluctuations. Science 297:1292–1296

    Article  PubMed  CAS  Google Scholar 

  • Teramae Jn, Nakao H, Ermentrout G B (2009) Stochastic phase reduction for a general class of noisy limit cycle oscillators. Phys Rev Lett 102:194,102

    Article  Google Scholar 

  • Trenberth KE (1997) The definition of El Niño. Bull Am Meteorol Soc 78:2771–2777

    Article  Google Scholar 

  • Turchin P, Ellner SP (2000) Living on the edge of chaos: Population dynamics of fennoscandian voles. Ecology 81:3099–3116

    Article  Google Scholar 

  • Turchin P, Taylor AD (1992) Complex dynamics in ecological time series. Ecology 73:289–305

    Article  Google Scholar 

  • Vasseur DA, Yodzis P (2004) The color of environmental noise. Ecology 85:1146–1152

    Article  Google Scholar 

  • Yamamura K, Yokozawa M, Nishimori M, Ueda Y, Yokosuka T (2006) How to analyze long-term insect population dynamics under climate change: 50-year data of three insect pests in paddy fields. Popul Ecol 48:31–48

    Article  Google Scholar 

  • Zweig MH, Campbell G (1993) Receiver-operating characteristic (roc) plots: a fundamental evaluation tool in clinical medicine. Clin Chem 39:561–577

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the PIMS IGTC for Mathematical Biology and NSERC (Canada).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stilianos Louca.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 236 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Louca, S., Doebeli, M. Distinguishing intrinsic limit cycles from forced oscillations in ecological time series. Theor Ecol 7, 381–390 (2014). https://doi.org/10.1007/s12080-014-0225-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12080-014-0225-9

Keywords

Navigation