Theoretical Ecology

, Volume 7, Issue 2, pp 127–135 | Cite as

Resource competition and community response to fertilization: the outcome depends on spatial strategies

  • Donald R. SchoolmasterJr.
  • Gary G. Mittelbach
  • Katherine L. Gross
Original Paper


Decreases in plant species richness and shifts in community structure following fertilization are usually attributed to increasing light limitation. However, there is increasing evidence that light limitation alone does not account for all of the observed effects of fertilization on plant communities. We present a model of competition for a single, spatially heterogeneous resource that shows fertility-mediated changes in community structure without light competition. This model predicts that in a low-productivity spatially heterogeneous habitat, species that interact with the resource environment over small spatial scales may exclude species that experience the environment at larger spatial scales, even when the latter species are better resource competitors in a uniform environment (have a lower R*). Increasing overall habitat fertility under these conditions minimizes the effects of spatial heterogeneity on the species that forage at a larger spatial scale, resulting in changes in species dominance and the potential for species coexistence. This analysis suggests that considering differences in the spatial scales at which species interact with environmental heterogeneity may help explain observed changes in community structure following fertilization.


Clonal plants Fertilization Light limitation Resource competition Spatial heterogeneity Coexistence Community structure 



This work was supported by grants from the National Science Foundation (DEB-0235699), the A.W. Mellon Foundation, and Michigan State University. We are grateful to Jim Grace and Tim Dickson for helpful comments on the manuscript and to the Michigan Department of Natural Resources staff at the Allegan State Game Area for allowing us to conduct field experiments at the site. This is KBS contribution number 1727.

Supplementary material

12080_2013_205_MOESM1_ESM.docx (289 kb)
Appendix S1 Development of Eq. 1a (DOCX 289 kb)
12080_2013_205_MOESM2_ESM.docx (89 kb)
Appendix S2 Proof that invasion criterion for runner species is a saturating function of R n * (DOCX 89 kb)
12080_2013_205_MOESM3_ESM.docx (562 kb)
Appendix S3 Relaxation of global dispersal assumption (DOCX 562 kb)


  1. Abrams PA, Wilson WG (2004) Coexistence in meta-communities due to spatial variation in resource growth rates: Does R* predict the outcome of competition? Ecol Lett 7:929–940. doi: 10.1111/j.1461-0248.2004.00644.x CrossRefGoogle Scholar
  2. Aerts R, Berendse F, Decaluwe H, Schmitz M (1990) Competition in heathland along an experimental gradient of nutrient availability. Oikos 57:310–318. doi: 10.2307/3565959 CrossRefGoogle Scholar
  3. Baer SG, Blair JM, Collins SL, Knapp AK (2003) Soil resources regulate productivity and diversity in newly established tallgrass prairie. Ecology 84:724–735. doi: 10.1890/0012-9658(2003)084[0724:SRRPAD]2.0.CO;2 CrossRefGoogle Scholar
  4. Baer SG, Blair JM, Collins SL, Knapp AK (2004) Plant community responses to resource availability and heterogeneity during restoration. Oecologia 139:617–629. doi: 10.1007/s00442-004-1541-3 PubMedCrossRefGoogle Scholar
  5. Berendse F (1994) Competition between plant populations at low and high nutrient supplies. Oikos 71:253–260. doi: 10.2307/3546273 CrossRefGoogle Scholar
  6. Campbell BD, Grime JP, Mackey JML (1991a) A tradeoff between scale and precision in resource foraging. Oecologia 87:532–538. doi: 10.1007/BF00320417 CrossRefGoogle Scholar
  7. Campbell BD, Grime JP, Mackey JML, Jalili A (1991b) The quest for a mechanistic understanding of resource competition in plant communities: the role of experiments. Funct Ecol 5:241–253. doi: 10.2307/2389262 CrossRefGoogle Scholar
  8. Chesson P, Peterson AG (2002) The quantitative assessment of the benefits of physiological integration in clonal plants. Evol Ecol Res 4:1153–1176. doi: 10.1046/j.1442-9993.2002.01219.x Google Scholar
  9. Cleland EE, Harpole WS (2010) Nitrogen enrichment and plant communities. Ann N Y Acad Sci 1195:46–61. doi: 10.1111/j.1749-6632.2010.05458.x PubMedCrossRefGoogle Scholar
  10. de Kroon H, Hutchings MJ (1996) Morphological plasticity in clonal plants: the foraging concept reconsidered. J Ecol 83:143–152CrossRefGoogle Scholar
  11. Dickson TL, Foster BL (2011) Fertilization decreases plant biodiversity even when light is not limiting. Ecol Lett 14:380–388. doi: 10.1111/j.1461-397 0248.2011.01599.x PubMedCrossRefGoogle Scholar
  12. Donald CM (1958) The interaction of competition for light and for nutrients. Aust J Agric Res 9:421–435. doi: 10.1071/AR9580421 CrossRefGoogle Scholar
  13. Dong M, de Kroon H (1994) Plasticity in morphology and biomass allocation in Cynodon dactylon, a grass species forming stolons and rhizomes. Oikos 70:99–106. doi: 10.2307/3545704 CrossRefGoogle Scholar
  14. Dong M, During HJ, Werger MJA (1996) Morphological responses to nutrient availability in four clonal herbs. Vegetatio 123:183–192. doi: 10.1007/BF00118270 CrossRefGoogle Scholar
  15. Dybzinski R, Tilman D (2007) Resource use patterns predict long-term outcomes of plant competition for nutrients and light. Am Nat 170:305–318. doi: 10.1086/519857 PubMedCrossRefGoogle Scholar
  16. Eilts JA, Mittelbach GG, Reynolds HL, Gross KL (2011) Resource heterogeneity, soil fertility, and species diversity: impacts of clonal species on plant communities. Am Nat 177:574–588. doi: 10.1086/659633 PubMedCrossRefGoogle Scholar
  17. Goldberg DE, Miller TE (1990) Effects of different resource additions on species diversity in an annual plant community. Ecology 71:213–225. doi: 10.2307/1940261 CrossRefGoogle Scholar
  18. Golubski AJ, Gross KL, Mittelbach GG (2008) Competition among plant species that interact with their environment at different spatial scales. Proc R Soc Lond Ser B Biol Sci 275:1897–1906. doi: 10.1098/rspb.2008.0272 CrossRefGoogle Scholar
  19. Gough L, Osenberg CW, Gross KL, Collins SL (2000) Fertilization effects on species density and primary productivity in herbaceous plant communities. Oikos 89:428–439. doi: 10.1034/j.1600-0706.2000.890302.x CrossRefGoogle Scholar
  20. Gough L, Gross KL, Cleland EE, Clark CM, Collins SL, Fargione JE, Pennings SC, Suding KN (2012) Incorporating clonal growth form clarifies the role of plant height in response to nitrogen addition. Oecologia 169:1053–1062. doi: 10.1007/s00442-012-2264-5 PubMedCrossRefGoogle Scholar
  21. Grace JB (1999) The factors controlling species density in herbaceous plant communities: an assessment—Perspect. Plant Ecol Evol Syst 2:1–28. doi: 10.1078/1433-8319-00063 CrossRefGoogle Scholar
  22. Grime JP (1973) Competitive exclusion in herbaceous vegetation. Nature 242:344–347. doi: 10.1038/242344a0 CrossRefGoogle Scholar
  23. Grime JP (1987) Dominant and subordinate components of plant communities: implications for succession, stability and diversity. In: Gray AJ et al (eds) Colonization, succession and stability. Blackwell, pp 413–428Google Scholar
  24. Gross KL, Mittelbach GG, Reynolds HL (2005) Grassland invisibility and diversity: responses to nutrients, seed input, and disturbance. Ecology 86:476–486. doi: 10.1890/04-0122 CrossRefGoogle Scholar
  25. Harpole WS, Tilman D (2007) Grassland species loss resulting from reduced niche dimension. Nature 446:791–793. doi: 10.1038/nature05684 PubMedCrossRefGoogle Scholar
  26. Hautier Y, Niklaus PA, Hector A (2009) Competition for light causes plant biodiversity loss after eutrophication. Science 324:636–638. doi: 10.1126/science.1169640 PubMedCrossRefGoogle Scholar
  27. Jonasson S (1992) Plant responses to fertilization and species removal in tundra related to community structure and clonality. Oikos 63:420–429. doi: 10.2307/3544968 CrossRefGoogle Scholar
  28. Kembel SW, Cahill JF Jr (2005) Plant phenotypic plasticity belowground: a phylogenetic perspective on root foraging tradeoffs. Am Nat 166:216–230. doi: 10.1086/431287 PubMedCrossRefGoogle Scholar
  29. Kembel SW, de Kroon H, Cahill JF, Mommer L (2008) Improving the scale and precision hypothesis to explain root foraging ability. Ann Bot 101:1295–1301. doi: 10.1093/aob/mcn044 PubMedCentralPubMedCrossRefGoogle Scholar
  30. Knops JMH, Reinhart K (2000) Specific leaf area along a nitrogen fertilization gradient. Am Mid Nat 144:265–272. doi: 10.1674/0003-0031(2000)144[0265:SLAAAN]2.0.CO;2) CrossRefGoogle Scholar
  31. Kun A, Oborny B (2003) Survival and competition of clonal plant populations in spatially and temporally heterogenous environments. Community Ecol 4:1–20. doi: 10.1556/ComEc.4.2003.1.1 CrossRefGoogle Scholar
  32. Pennings SC, Clark CM, Cleland EE, Collins SL, Gough L, Gross KL, Milchunas DG, Suding KN (2005) Do individual plant species show predictable responses to nitrogen across multiple experiments? Oikos 110:547–555. doi: 10.1111/j.0030-1299.2005.13792.x CrossRefGoogle Scholar
  33. Reynolds HL, Mittelbach GG, Darcy-Hall TL, Houseman GR, Gross KL (2007) No effect of varying soil resource heterogeneity on plant species richness in a low fertility grassland. J Ecol 95:723–733. doi: 10.1111/j.1365-2745.2007.01252.x CrossRefGoogle Scholar
  34. Schmid B, Bazzaz FA (1992) Growth responses of rhizomatous plants to fertilizer application and interference. Oikos 65:13–24. doi: 10.2307/3544882 CrossRefGoogle Scholar
  35. Stoll P, Egli P, Schmid B (1999) Plant foraging and rhizome growth patterns in Solidago altissima in response to mowing and fertilizer application. J Ecol 86:341–354. doi: 10.1046/j.1365-2745.1998.00263.x CrossRefGoogle Scholar
  36. Suding KN, Collins SL, Gough L, Clark C, Cleland EE, Gross KL, Milchunas DG, Pennings S (2005) Functional- and abundance-based mechanisms explain diversity loss due to N fertilization. Proc Natl Acad Sci 102:4387–4393. doi: 10.1073/pnas.0408648102 PubMedCentralPubMedCrossRefGoogle Scholar
  37. Tilman D (1985) The resource-ratio hypothesis of plant succession. Am Nat 125:827–852. doi: 10.1086/284382 CrossRefGoogle Scholar
  38. Tilman D (1987) Secondary succession and the pattern of plant dominance along experimental nitrogen gradients. Ecol Monogr 57:189–214. doi: 10.2307/2937080 CrossRefGoogle Scholar
  39. Tilman D (1988) Plant strategies and the dynamics and structure of plant communities. Monographs in Population Biology, Princeton University PressGoogle Scholar
  40. Tilman D, Wedin D (1991) Plant traits and resource reduction for five grasses growing on a nitrogen gradient. Ecology 72:685–700. doi: 10.2307/2937208 CrossRefGoogle Scholar
  41. Wilson SD, Tilman D (1993) Plant competition and resource availability in response to disturbance and fertilization. Ecology 74:599–611. doi: 10.2307/1939319 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Donald R. SchoolmasterJr.
    • 1
    • 2
  • Gary G. Mittelbach
    • 1
    • 3
  • Katherine L. Gross
    • 1
    • 4
  1. 1.W.K. Kellogg Biological StationMichigan State UniversityHickory CornersUSA
  2. 2.Five Rivers Services, LLC at US Geological SurveyNational Wetlands Research CenterLafayetteUSA
  3. 3.Department of ZoologyMichigan State UniversityEast LansingUSA
  4. 4.Department of Plant BiologyMichigan State UniversityEast LansingUSA

Personalised recommendations