Skip to main content

Regime shifts in a social-ecological system

Abstract

Ecological regime shifts are rarely purely ecological. Not only is the regime shift frequently triggered by human activity, but the responses of relevant actors to ecological dynamics are often crucial to the development and even existence of the regime shift. Here, we show that the dynamics of human behaviour in response to ecological changes can be crucial in determining the overall dynamics of the system. We find a social–ecological regime shift in a model of harvesters of a common-pool resource who avoid over-exploitation of the resource by social ostracism of non-complying harvesters. The regime shift, which can be triggered by several different drivers individually or also in combination, consists of a breakdown of the social norm, sudden collapse of co-operation and an over-exploitation of the resource. We use the approach of generalized modeling to study the robustness of the regime shift to uncertainty over the specific forms of model components such as the ostracism norm and the resource dynamics. Importantly, the regime shift in our model does not occur if the dynamics of harvester behaviour are not included in the model. Finally, we sketch some possible early warning signals for the social–ecological regime shifts we observe in the models.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Notes

  1. 1.

    In this article, we use the term ‘regime shift’ in a social as well as an ecological context. We intend the term ‘regime shift’ to be understood in such a social context as not (necessarily) a political regime change but rather any recognisably sudden, large and persistent change in the behaviour of relevant actors.

  2. 2.

    These conditions can be easily derived by noting that the eigenvalues of a two-dimensional Jacobian matrix are \(\lambda = \frac {1}{2}\rm tr {\rm \bf J} \pm \frac {1}{2}\sqrt {\rm tr ^2 {\rm \bf J} - 4\det {\rm \bf J} }\). We emphasise that Eq. 4 is only valid in two dimensions; approaches that also work for higher dimensions include the Routh-Hurwitz criteria and the method of resultants (Gross and Feudel 2004).

  3. 3.

    In the TSL model, these linkages have the following non-linearities: \(Q(E,R) \propto ER\) and \(F(E,R) \propto E^{a-1}R^b\).

References

  1. Acheson J, Gardner R (2011) The evolution of the Maine lobster V-notch practice: cooperation in a prisoner’s dilemma game. Ecol Soc 16:41

    Google Scholar 

  2. Aufderheide H, Rudolf L, Gross T (2012) Mesoscale symmetries explain dynamical equivalence of food webs. New J Phys 14(10):105014

    Article  Google Scholar 

  3. Berkes F, Folke C (1998) Linking social and ecological systems Management practices and social mechanisms for building resilience. Cambridge University Press, Cambridge

    Google Scholar 

  4. Bestelmeyer BT, Ellison AM, Fraser WR, Gorman KB, Holbrook SJ, Laney CM, Ohman MD, Peters DPC, Pillsbury FC, Rassweiler A, Schmitt RJ, Sharma S (2011) Analysis of abrupt transitions in ecological systems. Ecosphere 2:129

  5. Biggs R, Carpenter SR, Brock WA (2009) Turning back from the brink: detecting an impending regime shift in time to avert it. Proc Natl Acad Sci USA 106(3):826–831

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  6. Biggs R, Blenckner T, Folke C, Gordon L, Norström A, Nyström M, Peterson G (2012a) Regime shifts. In: Hastings A, Gross LJ (eds) Encyclopedia of theoretical ecology. University of California Press, Berkeley, pp 609–617

    Google Scholar 

  7. Biggs R, Schlüter M, Biggs D, Bohensky EL, BurnSilver S, Cundill G, Dakos V, Daw TM, Evans LS, Kotschy K, Leitch AM, Meek C, Quinlan A, Raudsepp-Hearne C, Robards MD, Schoon ML, Schultz L, West PC (2012b) Toward principles for enhancing the resilience of ecosystem services. Annu Rev Environ Resour 37:421–448

    Article  Google Scholar 

  8. Boettiger C, Hastings A (2012) Quantifying limits to detection of early warning for critical transitions. J R Soc Interface 9:2527–2539

    PubMed Central  PubMed  Article  Google Scholar 

  9. Boettiger C, Hastings A (2013) From patterns to predictions. Nature 493:157–158

    CAS  PubMed  Google Scholar 

  10. Bowles S, Gintis H (2002) Social capital and community governance. Econ J 112(483):F419–F436

    Article  Google Scholar 

  11. Carpenter SR, Mooney HA, Agard J, Capistrano D, DeFries RS, Daz S, Dietz T, Duraiappah AK, Oteng-Yeboah A, Pereira HM, Perrings C, Reid WV, Sarukhan J, Scholes RJ, Whyte A (2009). Proc Natl Acad Sci 106(5):1305–1312

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  12. Chambers RG (1988) Applied production analysis: a dual approach. Cambridge University Press, Cambridge

    Google Scholar 

  13. Cialdini RB, Goldstein NJ (2004) Social influence: compliance and conformity. Annu Rev Psychol 55:591–621

    PubMed  Article  Google Scholar 

  14. Contamin R, Ellison AM (2009) Indicators of regime shifts in ecological systems: what do we need to know and when do we need to know it. Ecol Appl 19:799–816

    PubMed  Article  Google Scholar 

  15. Crépin AS, Lindahl T (2009) Grazing games: sharing common property resources with complex dynamics. Environ Resour Econ 44:29–46

    Article  Google Scholar 

  16. Crépin AS, Biggs R, Polasky S, Troell M, de Zeeuw A (2012) Regime shifts and management. Ecol Econ 84:15–22

    Article  Google Scholar 

  17. Dakos V, Carpenter S, Cline T, Lahti L (2012a) Early warning signals toolbox. Version 1.0.2, http://earlywarnings.r-forge.r-project.org

  18. Dakos V, Carpenter SR, Brock WA, Ellison AM, Guttal V, Ives AR, Kfi S, Livina V, Seekell DA, van Nes EH, Scheffer M (2012b) Methods for detecting early warnings of critical transitions in time series illustrated using simulated ecological data. PLoS ONE 7(7):e41010

    CAS  Article  Google Scholar 

  19. Dakos V, van Nes EH, D’Oderico P, Scheffer M (2012c) Robustness of variance and autocorrelation as indicators of critical slowing down. Ecol 93:264–271

    Article  Google Scholar 

  20. Ditlevsen PD, Johnsen SJ (2010) Tipping points: early warning and wishful thinking. Geophysical Research Letters 37(19):L19703

    Article  Google Scholar 

  21. Ermentrout B (2011) XPPAUT. Version 6.11, http://www.math.pitt.edu/~bard/xpp/xpp.html

  22. Fehr E, Fischbacher U (2002) Why social preferences matter—the impact of non-selfish motives on competition, cooperation, and incentives. Econ J 112(478):C1–C33

    Article  Google Scholar 

  23. Folke C, Carpenter SR, Walker B, Scheffer M, Chapin T, Rockström J (2010) Resilience thinking: integrating resilience, adaptability and transformability. Ecol Soc 15:20

    Google Scholar 

  24. Gehrmann E, Drossel B (2010) Boolean versus continuous dynamics on simple two-gene modules. Phys Rev E 82:046120

    Article  Google Scholar 

  25. Gross T, Feudel U (2004) Analytical search for bifurcation surfaces in parameter space. Physica D 195(34):292–302

    Article  Google Scholar 

  26. Gross T, Feudel U (2006) Generalized models as a universal approach to the analysis of nonlinear dynamical systems. Phys Rev E 73(1):016205

    Article  Google Scholar 

  27. Gross T, Rudolf L, Levin SA, Dieckmann U (2009) Generalized models reveal stabilizing factors in food webs. Science 325:747–750

    CAS  PubMed  Article  Google Scholar 

  28. Guckenheimer J (1978) The catastrophe controversy. Math Intell 1:15–20

    Article  Google Scholar 

  29. Hastings A, Wysham DB (2010) Regime shifts in ecological systems can occur with no warning. Ecol Lett 13:464–472

    PubMed  Article  Google Scholar 

  30. Horan RD, Fenichel EP, Drury KLS, Lodge DM (2011) Managing ecological thresholds in coupled environmental-human systems. Proc Natl Acad Sci USA 108:7333–7338

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  31. Iwasa Y, Uchida T, Yokomizo H (2007) Nonlinear behavior of the socio-economic dynamics for lake eutrophication control. Ecol Econ 63(1):219–229

    Article  Google Scholar 

  32. Kelley WG, Peterson AC (2010) The theory of differential equations: classical and qualitative, 2nd edn. Springer, New York

    Book  Google Scholar 

  33. Kline RB (2011) Principles and Practice of structural equation modeling, 3rd edn. Guilford Press, New York

    Google Scholar 

  34. Kuehn C (2011) A mathematical framework for critical transitions: bifurcations, fast-slow systems and stochastic dynamics. Physica D 240:1020–1035

    CAS  Article  Google Scholar 

  35. Kuehn C (2013) A mathematical framework for critical transitions: normal forms, variance and applications. J Nonlinear Sci doi:10.1007/s00332-012-9158-x

    Google Scholar 

  36. Kuehn C, Siegmund S, Gross T (2013) Dynamical analysis of evolution equations in generalized models. IMA J App Math. doi:10.1093/imamat/hxs008

    Google Scholar 

  37. Kuznetsov Y (2010) Elements of applied bifurcation theory. Springer, New York

    Google Scholar 

  38. Lade SJ, Gross T (2012) Early warning signals for critical transitions: a generalized modeling approach. PLoS Comput Biol 8(2):e1002360

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  39. Lenton TM (2012) What early warning systems are there for environmental shocks?. In press

  40. Levin S, Xepapadeas T, Crépin AS, Norberg J, de Zeeuw A, Folke C, Hughes T, Arrow K, Barrett S, Daily G, Ehrlich P, Kautsky N, Mäler KG, Polasky S, Troell M, Vincent JR, Walker B (2012) Social-ecological systems as complex adaptive systems: modeling and policy implications. Environ Dev Econ FirstView:1–22

    Google Scholar 

  41. Millennium Ecosystem Assessment (2005) Ecosystems and human well-being: synthesis. Island Press, Washington DC

    Google Scholar 

  42. Osés-Eraso N, Viladrich-Grau M (2007) On the sustainability of common property resources. J Environ Econ Manag 53(3):393–410

    Article  Google Scholar 

  43. Ostrom E (1990) Governing the commons: the evolution of institutions for collective action. Cambridge University Press, Cambridge

    Book  Google Scholar 

  44. Ostrom E (2006) The value-added of laboratory experiments for the study of institutions and common-pool resources. J Econ Behav Organ 61(2):149–163

    Article  Google Scholar 

  45. Perretti CT, Munch SB (2012) Regime shift indicators fail under noise levels commonly observed in ecological systems. Ecol Appl 22:1771–1779

    Article  Google Scholar 

  46. Polasky S, de Zeeuw A, Wagener F (2011) Optimal management with potential regime shifts. J Environ Econ Manag 62(2):229–240

    Article  Google Scholar 

  47. Raffensperger C, Tickner J (1999) Protecting public health and the environment Implementing the precautionary principle. Island Press, Washington DC

    Google Scholar 

  48. Scheffer M, Carpenter S, Foley JA, Folke C, Walker B (2001) Catastrophic shifts in ecosystems. Nature 413:591–596

    CAS  PubMed  Article  Google Scholar 

  49. Scheffer M, Bascompte J, Brock WA, Brovkin V, Carpenter SR, Dakos V, Held H, van Nes EH, Rietkerk M, Sugihara G (2009) Early-warning signals for critical transitions. Nature 461:53–59

    CAS  PubMed  Article  Google Scholar 

  50. Scheffer M, Carpenter SR, Lenton TM, Bascompte J, Brock W, Dakos V, van de Koppel J, van de Leemput IA, Levin SA, van Nes EH, Pascual M, Vandermeer J (2012) Anticipating critical transitions. Science 338:344–348

    CAS  PubMed  Article  Google Scholar 

  51. Schlüter M, McAllister RRJ, Arlinghaus R, Bunnefeld N, Eisenack K, Hölker F, Milner-Gulland E, Müller B, Nicholson E, Quaas M, Stöven M (2012a) New horizons for managing the environment: a review of coupled social-ecological systems modeling. Nat Resour Model 25:219–272

    Article  Google Scholar 

  52. Schlüter M, Müller B, Frank K (2012b) MORE—modeling for resilience thinking and ecosystem stewardship. Available at SSRN: http://ssrn.com/abstract=2037723 or http://dx.doi.org/10.2139/ssrn.2037723

  53. Steneck RS, Hughes TP, Cinner JE, Adger WN, Arnold SN, Berkes F, Boudreau SA, Brown K, Folke C, Gunderson L, Olsson P, Scheffer M, Stephenson E, Walker B, Wilson J, Worm B (2011) Creation of a gilded trap by the high economic value of the maine lobster fishery, vol 25

  54. Sterman JD (2000) Business Dynamics: Systems Thinking and Modeling for a Complex World. McGraw-Hill

  55. Steuer R, Gross T, Selbig J, Blasius B (2006) Structural kinetic modeling of metabolic networks. Proc Natl Acad Sci 103(32):11868–11873

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  56. Tarui N, Mason CF, Polasky S, Ellis G (2008) Cooperation in the commons with unobservable actions. J Environ Econ Manag 55(1):37–51

    Article  Google Scholar 

  57. Tavoni A, Schlüter M, Levin S (2012) The survival of the conformist: social pressure and renewable resource management. Journal of Theoretical Biology 299:152–161

    PubMed  Article  Google Scholar 

  58. Traulsen A, Claussen JC, Hauert C (2005) Coevolutionary dynamics: from finite to infinite populations. Physical Review Letters 238701:95

    Google Scholar 

  59. Zeeman EC (1977) Catastrophe theory: selected papers, 1972–1977. Addison-Wesley

  60. Zumsande M (2011) Extension of generalized modeling and application to problems from cell biology. PhD thesis, Technische Universität Dresden

  61. Zumsande M, Gross T (2010) Bifurcations and chaos in the MAPK signaling cascade. J Theor Biol 265(3):481–491

    CAS  PubMed  Article  Google Scholar 

  62. Zumsande M, Stiefs D, Siegmund S, Gross T (2011) General analysis of mathematical models for bone remodeling. Bone 48(4):910–917

    PubMed  Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Oonsie Biggs, Ralf Eichhorn, Carl Folke, Thilo Gross, Jamila Haider, Juan Carlos Rocha and Nanda Wijermans for helpful comments on the manuscript. The research leading to these results has received funding from the European Research Council under the European Unions Seventh Framework Programme (FP/2007-2013)/ERC grant agreement no. 283950 SES-LINK and a core grant to the Stockholm Resilience Centre by Mistra.. AT is supported by the Centre for Climate Change Economics and Policy, which is funded by the UK Economic and Social Research Council and Munich Re. SAL was supported by National Science Foundation grants EF-1137894 and GEO-1211972.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Steven J. Lade.

Electronic Supplementary Material

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lade, S.J., Tavoni, A., Levin, S.A. et al. Regime shifts in a social-ecological system. Theor Ecol 6, 359–372 (2013). https://doi.org/10.1007/s12080-013-0187-3

Download citation

Keywords

  • Regime shifts
  • Tipping points
  • Early warning signals
  • Bifurcation
  • Generalized modelling
  • social–ecological system