Advertisement

Theoretical Ecology

, Volume 6, Issue 4, pp 495–503 | Cite as

Global versus local extinction in a network model of plant–pollinator communities

  • Thomas LaBar
  • Colin CampbellEmail author
  • Suann Yang
  • Réka Albert
  • Katriona Shea
Original Paper

Abstract

The loss of a species from an ecological community can trigger a cascade of additional extinctions; the complex interactions that comprise ecological communities make the dynamics and impacts of such a cascade challenging to predict. Previous studies have typically considered global extinctions, where a species cannot re-enter a community once it is lost. However, in some cases a species only becomes locally extinct, and may be able to reinvade from surrounding communities. Here, we use a dynamic, Boolean network model of plant–pollinator community assembly to analyze the differences between global and local extinction events in mutualistic communities. As expected, we find that compared to global extinctions, communities respond to local extinctions with lower biodiversity loss, and less variation in topological network properties. We demonstrate that in the face of global extinctions, larger communities suffer greater biodiversity loss than smaller communities when similar proportions of species are lost. Conversely, smaller communities suffer greater loss in the face of local extinctions. We show that targeting species with the most interacting partners causes more biodiversity loss than random extinctions in the case of global, but not local, extinctions. These results extend our understanding of how mutualistic communities respond to species loss, with implications for community management and conservation efforts.

Keywords

Biodiversity Extinctions Mutualisms Network theory Pollination Species richness 

Notes

Acknowledgments

We acknowledge members of the Shea research lab for helpful discussions during the preparation of this research. This work was supported by NSF grant DEB-0815373 and an NSF REU to K.S., NSF grant PHY 1205840 to R.A., and the Biology Department (Presbyterian College) to SY.

References

  1. Albert R, Jeong H, Barabasi AL (2000) Error and attack tolerance of complex networks. Nature 406(6794):378–382PubMedCrossRefGoogle Scholar
  2. Allesina S, Tang S (2012) Stability criteria for complex ecosystems. Nature 483(7388):205–208PubMedCrossRefGoogle Scholar
  3. Almeida-Neto M, Guimarães P, Guimarães PR, Loyola R, Ulrich W (2008) A consistent metric for nestedness analysis in ecological systems: reconciling concept and measurement. Oikos 117(8):1227–1239CrossRefGoogle Scholar
  4. Arii K, Parrott L (2004) Emergence of non-random structure in local food webs generated from randomly structured regional webs. J Theor Biol 227:327–333PubMedCrossRefGoogle Scholar
  5. Baiser B, Buckley HL, Gotelli NJ, Ellison AM (2012) Predicting food-web structure with metacommunity models. Oikos. doi: 10.1111/j.1600-0706.2012.00005.x Google Scholar
  6. Barnosky A, Matzke N, Tomiya S, Wogan G, Swartz B, Quental T, Marshall C et al (2011) Has the Earth’s sixth mass extinction already arrived? Nature 471(7336):51–57PubMedCrossRefGoogle Scholar
  7. Barrows E (1976) Nectar robbing and pollination of Lantana camara (Verbenaceae). Biotropica 8(2):132–135CrossRefGoogle Scholar
  8. Bascompte J, Jordano P (2007) Plant-animal mutualistic networks: the architecture of biodiversity. Annu Rev Ecol Evol Syst 38(1):567–593CrossRefGoogle Scholar
  9. Bascompte J, Jordano P, Melián C, Olesen JM (2003) The nested assembly of plant–animal mutualistic networks. Proc Natl Acad Sci 100(16):9383–9387PubMedCrossRefGoogle Scholar
  10. Bastolla U, Fortuna M, Pascual-García A, Ferrera A, Luque B, Bascompte J (2009) The architecture of mutualistic networks minimizes competition and increases biodiversity. Nature 458(7241):1018–1020PubMedCrossRefGoogle Scholar
  11. Campbell C, Yang S, Albert R, Shea K (2011) A network model for plant–pollinator community assembly. Proc Natl Acad Sci 108(1):197–202PubMedCrossRefGoogle Scholar
  12. Campbell C, Yang S, Shea K, Albert R (2012) Topology of plant-pollinator networks that are vulnerable to collapse from species extinction. Phys Rev E 86(2):021924CrossRefGoogle Scholar
  13. Dunn R, Harris N, Colwell R, Koh LP, Sodhi N (2009) The sixth mass coextinction: are most endangered species parasites and mutualists? Proc R Soc B: Biol Sci 276(1670):3037–3045CrossRefGoogle Scholar
  14. Dunne J, Williams R (2009) Cascading extinctions and community collapse in model food webs. Philos Trans R Soc B: Biol Sci 364(1524):1711–1723CrossRefGoogle Scholar
  15. Dunne J, Williams R, Martinez N (2002) Network structure and biodiversity loss in food webs: robustness increases with connectance. Ecol Lett 5(4):558–567CrossRefGoogle Scholar
  16. Dunne J, Williams R, Martinez N (2004) Network structure and robustness of marine food webs. Mar Ecol Prog Ser 273:291–302CrossRefGoogle Scholar
  17. Estes J, Palmisano J (1974) Sea otters: their role in structuring nearshore communities. Science 185(4156):1058–1060PubMedCrossRefGoogle Scholar
  18. Fortuna M, Bascompte J (2006) Habitat loss and the structure of plant–animal mutualistic networks. Ecol Lett 9(3):281–286PubMedCrossRefGoogle Scholar
  19. Franzén M, Nilsson S (2009) Both population size and patch quality affect local extinctions and colonizations. Proc R Soc B: Biol Sci 277(1678):79–85CrossRefGoogle Scholar
  20. Hastings A, Wolin C (1989) Within-patch dynamics in a metapopulation. Ecology 70(5):1261–1266CrossRefGoogle Scholar
  21. Jabot F, Bascompte J (2012) Bitrophic interactions shape biodiversity in space. Proc Natl Acad Sci 109(12):4521–4526PubMedCrossRefGoogle Scholar
  22. James A, Pitchford J, Plank M (2012) Disentangling nestedness from models of ecological complexity. Nature 487(7406):227–230PubMedCrossRefGoogle Scholar
  23. Jordano P, Bascompte J, Olesen JM (2003) Invariant properties in coevolutionary networks of plant–animal interactions. Ecol Lett 6:69–81CrossRefGoogle Scholar
  24. Jordano P, Bascompte J, Olesen JM (2006) The ecological consequences of complex topology and nested structure in pollination webs. In: Waser NM, Ollerton J (eds) Specialization and generalization in plant-pollinator interactions. University of Chicago Press, Chicago, pp 173–199Google Scholar
  25. Kaiser-Bunbury C, Muff S, Memmott J, Müller C, Caflisch A (2010) The robustness of pollination networks to the loss of species and interactions: a quantitative approach incorporating pollinator behaviour. Ecol Lett 13(4):442–452PubMedCrossRefGoogle Scholar
  26. Memmott J, Waser NM, Price M (2004) Tolerance of pollination networks to species extinctions. Proc R Soc Lond Ser B: Biol Sci 271(1557):2605–2611CrossRefGoogle Scholar
  27. Olesen JM, Jordano P (2002) Geographic patterns in plant-pollinator mutualistic networks. Ecology 83:2416–2424Google Scholar
  28. Olesen JM, Bascompte J, Dupont Y, Jordano P (2007) The modularity of pollination networks. Proc Natl Acad Sci 104(50):19891–19896PubMedCrossRefGoogle Scholar
  29. Petchey O, Eklöf A, Borrvall C, Ebenman B (2008) Trophically unique species are vulnerable to cascading extinction. Am Nat 171(5):568–579PubMedCrossRefGoogle Scholar
  30. Peter C, Johnson S (2008) Mimics and magnets: the importance of color and ecological facilitation in floral deception. Ecology 89(6):1583–1595PubMedCrossRefGoogle Scholar
  31. Ramos-Jiliberto R, Albornoz AA, Valdovinos FS, Smith-Ramírez C, Arim M, Armesto JJ, Marquet PA (2009) A network analysis of plant-pollinator interactions in temperate rain forests of Chiloe Island, Chile. Oecologia 160:697–706PubMedCrossRefGoogle Scholar
  32. Ramos-Jiliberto R, Valdovinos FS, Moisset de Espanés P, Flores JD (2012) Topological plasticity increases robustness of mutualistic networks. J Anim Ecol 81:896–904PubMedCrossRefGoogle Scholar
  33. Saadatpour A, Albert R (2012) Boolean modeling of biological regulatory networks: a methodology tutorial. Methods. doi: 10.1016/j.ymeth.2012.10.012 PubMedGoogle Scholar
  34. Srinivasan U, Dunne J, Harte J, Martinez N (2007) Response of complex food webs to realistic extinction sequences. Ecology 88(3):671–682PubMedCrossRefGoogle Scholar
  35. Stang M, Klinkhamer P, Waser NM, Stang I, van der Meijden E (2009) Size-specific interaction patterns and size matching in a plant–pollinator interaction web. Ann Bot 103(9):1459–1469PubMedCrossRefGoogle Scholar
  36. Thébault E, Fontaine C (2010) Stability of ecological communities and the architecture of mutualistic and trophic networks. Science 329(5993):853–856PubMedCrossRefGoogle Scholar
  37. Valdovinos FS, Ramos-Jiliberto R, Flores JD, Espinoza C, López G (2009) Structure and dynamics of pollination networks: the role of alien plants. Oikos 118:1190–1200Google Scholar
  38. Valdovinos FS, Moisset de Espanés P, Flores JD, Ramos-Jiliberto R (2012) Adaptive foraging allows the maintenance of biodiversity of pollination networks. Oikos. doi: 10.1111/j.1600-0706.2012.20830.x Google Scholar
  39. van Nouhuys S, Hanski I (2005) Metacommunities of butterflies and their parasitoids. In: Leibold M, Holt R, Holyoak M (eds) Metacommunities: spatial dynamics and ecological communities. Univ. Chicago Press, Chicago, pp 99–121Google Scholar
  40. Vázquez D, Aizen M (2004) Asymmetric specialization: a pervasive feature of plant–pollinator interactions. Ecology 85(5):1251–1257CrossRefGoogle Scholar
  41. Wang RS, Saadatpour A, Albert R (2012) Boolean modeling in systems biology: an overview of methodology and applications. Phys Biol 9:055001PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Thomas LaBar
    • 1
  • Colin Campbell
    • 2
    • 3
    Email author
  • Suann Yang
    • 4
  • Réka Albert
    • 2
    • 3
  • Katriona Shea
    • 2
  1. 1.Department of MathematicsThe Pennsylvania State UniversityPennsylvaniaUSA
  2. 2.Department of BiologyThe Pennsylvania State UniversityPennsylvaniaUSA
  3. 3.Department of PhysicsThe Pennsylvania State UniversityPennsylvaniaUSA
  4. 4.Department of BiologyPresbyterian CollegeClintonUSA

Personalised recommendations