Skip to main content
Log in

The role of sex separation in neutral speciation

  • Original Paper
  • Published:
Theoretical Ecology Aims and scope Submit manuscript

Abstract

Neutral speciation mechanisms based on isolation by distance and assortative mating, termed topopatric, has recently been shown to describe the observed patterns of abundance distributions and species–area relationships. Previous works have considered this type of process only in the context of hermaphroditic populations. In this work, we extend a hermaphroditic model of topopatric speciation to populations where individuals are explicitly separated into males and females. We show that for a particular carrying capacity, speciation occurs under similar conditions, but the number of species generated is lower than in the hermaphroditic case. As a consequence, the species–area curve has lower exponents, especially at intermediate scales. Evolution results in fewer species having more abundant populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Arrhenius O (1921) Specie and area. J Ecol 9:95–99

    Article  Google Scholar 

  • Ashlock D, Clare EL, von Königslöw TE, Ashlock W (2010) Evolution and instability in ring species complexes: an in silico approach to the study of speciation. JTB 264:1202–1213

    Article  Google Scholar 

  • Banavar J, Maritan A (2009) Towards a theory of biodiversity. Nature 460:334–335

    Article  PubMed  CAS  Google Scholar 

  • Baptestini EM, de Aguiar MAM, Araujo MS, Bolnick D (2009) The shape of the competition and carrying capacity kernels affects the likelihood of disruptive selection. JTB 259:5–11

    Article  Google Scholar 

  • Bolnick D, Doebeli M (2003) Sexual dimorphism and adaptive speciation: two sides of the same ecological coin. Evolution 57:2433

    PubMed  Google Scholar 

  • Bolnick DI, Kirkpatrick M (2012) The relationship between intraspecific assortative mating and reproductive isolation between divergent populations. Current Zoology 58(3):484–492

    Google Scholar 

  • Cannings C (1974) The latent roots of certain Markov chains arising in genetics; a new approach, haploid models. Adv Appl Prob 6:260

    Article  Google Scholar 

  • Coyne JA, Orr HA (2004) Speciation. Sinauer Associates, Sunderland

    Google Scholar 

  • de Aguiar MAM, Bar-Yam Y (2011) The Moran model as a dynamical process on networks and its implications for neutral speciation. Phys Rev E 84:031901

    Article  Google Scholar 

  • de Aguiar MAM, Baranger M, Baptestini EM, Kaufman L, Bar-Yam Y (2009) Global patterns of specation and diversity. Nature 460:384–387

    Article  PubMed  Google Scholar 

  • Desjardins-Proulx P, Gravel D (2012) A complex speciation-richness relationship in a simple neutral model. arXiv:1203.3884v1 [q-bio.PE]

  • Dieckmann U, Doebeli M (1999) On the origin of species by sympatric speciation. Nature 400:354–357

    Article  PubMed  CAS  Google Scholar 

  • Dieckmann U, Doebeli M (2000) Evolutionary branching and sympatric speciation caused by different types of ecological interactions. Am Nat 156:S77–S101

    Article  Google Scholar 

  • Doebeli M, Dieckmann U (2003) Speciation along environmental gradients. Nature 421:259–264

    Article  PubMed  CAS  Google Scholar 

  • Etienne RS, Haegeman B (2011) The neutral theory of biodiversity with random fission speciation. Theor Ecol 4:87

    Article  Google Scholar 

  • Ewens WJ (1979) Mathematical population genetics I. Theoretical introduction series: biomathematics, Vol. 9. Springer, New York

    Google Scholar 

  • Fitzpatrick BM, Fordyce JA, Gavrilets S (2009) Pattern, process and geographic modes of speciation. J Evol Biol 22:2342

    Article  PubMed  CAS  Google Scholar 

  • Gavrilets S (2004) Fitness landscapes and the origin of species. Princeton University Press, Princeton

    Google Scholar 

  • Gavrilets S, Cruzan MB (1998) Neutral gene flow across single locus cline. Evolution 52(5):1277–1284

    Article  Google Scholar 

  • Gavrilets S, Arnqvist G, Friberg U (2000) The evolution of female mate choice by sexual conflict. Proc R Soc Lond B 268:531–539. doi:10.1098/rspb.2000.1382

    Article  Google Scholar 

  • Gillespie JH (2004) Population genetics: a concise guide. The Johns Hopkins University Press, Baltimore

    Google Scholar 

  • Gorelick R, Heng HHQ (2011) Sex reduces genetic variation: a multidisciplinary review. Evolution 65:1088–1098

    Article  PubMed  Google Scholar 

  • Haerty W, Singh RS (2006) Gene regulation divergence is a major contributor to the evolution of Dobzhansky–Muller incompatibilities between species of Drosophila. Mol Biol Evol 23(9):1707–1714

    Article  PubMed  CAS  Google Scholar 

  • Higgs P, Derrida B (1991) Stochastic models for species formation in evolving populations. J Phys A 24:L985–L991

    Article  Google Scholar 

  • Higgs P, Derrida B (1992) Genetic distance and species formation in evolving populations. J Mol Evol 35:454–465

    Article  PubMed  CAS  Google Scholar 

  • Hoelzer GA, Drewes R, Meier J, Doursat R (2008) Isolation-by-distance and outbreeding depression are sufficient to drive parapatric speciation in the absence of environmental influences. PLoS Comput Biol 4:e1000126

    Article  PubMed  Google Scholar 

  • Hubbell S (2001) The unified neutral theory of biodiversity and biogeography. Princeton University Press, Princeton

    Google Scholar 

  • Irwin DE, Bensch S, Price TD (2001) Speciation in a ring. Nature 409:333–337

    Article  PubMed  CAS  Google Scholar 

  • Irwin DE, Bensch S, Irwin JH, Price TD (2005) Speciation by distance in a ring species. Science 307:414

    Article  PubMed  CAS  Google Scholar 

  • Kimura M, Weiss GH (1964) The stepping stone model of population structure and the decrease of genetic correlation with distance. Genetics 49:561–576

    PubMed  CAS  Google Scholar 

  • Kondrashov FA, Kondrashov AS (2001) Multidimensional epistasis and the disadvantage of sex. Proc Natl Acad Sci USA 98:12089–12092

    Article  PubMed  CAS  Google Scholar 

  • Kopp M (2010) Speciation and the neutral theory of biodiversity. BioEssays 32:564–570

    Article  PubMed  Google Scholar 

  • Leimar O, Doebeli M, Dieckmann U (2008) Evolution of phenotypic clusters through competition and local adaptation along an environmental gradient. Evolution 62(4):807

    Article  PubMed  Google Scholar 

  • Mallet J (1995) A species definition for the modern synthesis. Trends Eco Evol 10:294

    Article  CAS  Google Scholar 

  • May R (1975) In: Cody M, Diamond Belknap J (eds) Ecology and evolution of communities. Harvard University Press, Cambridge

    Google Scholar 

  • Mayr E (1955) In: Arai R, Kato M, Doi Y (eds) Biodiversity and evolution. National Science Museum Foundation, Tokyo

    Google Scholar 

  • Mayr E (1988) Toward a new philosophy of biology. Harvard University Press, Cambridge

    Google Scholar 

  • Melian CJ, Alonso D, Vázquez DP, Regetz J, Allesina S (2010) Frequency-dependent selection predicts patterns of radiations and biodiversity. PLoS Comp Biol 6:e1000892

    Article  Google Scholar 

  • Melian CJ, Alonso D, Allesina S, Condit RS, Etienne RS (2012) Does sex speed up evolutionary rate and increase biodiversity? PLoS Comput Biol 8(3):e1002414

    Article  PubMed  CAS  Google Scholar 

  • Moran PAP (1958) Random processes in genetics. Proc Cam Phil Soc 54:60

    Article  Google Scholar 

  • O'Dwyer JP, Green JL (2010) Field theory for biogeography: a spatially explicit model for predicting patterns of biodiversity. Ecol Lett 13:87–95

    Article  PubMed  Google Scholar 

  • Orr HA (1997) Haldane's rule. Annu Rev Ecol Svst 28:195–218

    Article  Google Scholar 

  • Orr HA, Presgraves DC (2000) Speciation by postzygotic isolation: forces, genes and molecules. BioEssays 22:1085–1094

    Article  PubMed  CAS  Google Scholar 

  • Parker GA, Partridge L (1998) Sexual confict and speciation. Phil Trans R Soc Lond B 353:261–274

    Article  CAS  Google Scholar 

  • Pinho C, Hey J (2010) Divergence with gene flow: models and data. Annu Rev Ecol Evol Syst 41:215

    Article  Google Scholar 

  • Preston FW (1960) Time and space and the variation of species. Ecology 42:611

    Article  Google Scholar 

  • Rosenzweig M (1995) Species diversity in space and time. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Rosenzweig ML (1997) Tempo and mode of speciation. Science 277:1622–1623

    Article  CAS  Google Scholar 

  • Rosindell J, Phillimore AB (2011) A unified model of island biogeography sheds light on the zone of radiation. Ecol Lett 14:552–560. doi:10.1111/j.1461-0248.2011.01617.x

    Article  PubMed  Google Scholar 

  • Rosindell J, Cornell SJ, Hubbell SP, Etienne RS (2010) Protracted speciation revitalizes the neutral theory of biodiversity. Ecol Lett 13:716–727

    Article  PubMed  Google Scholar 

  • Rosindell J, Hubbell SP, Etienne RS (2011) The unified neutral theory of biodiversity and biogeography at age ten. Trends Ecol Evol 26:340–348. doi:10.1016/j.tree.2011.03.024

    Article  PubMed  Google Scholar 

  • Sayama H, de Aguiar MAM, Bar-Yam Y, Baranger M (2002) Spontaneous pattern formulation and genetic invasion in locally mating and competing populations. Phys Rev E 65:051919

    Article  Google Scholar 

  • Sugihara G (1980) Minimal community structure: an explanation of species abundance patterns. Am Nat 116:770–787

    Article  Google Scholar 

  • Templeton A (1989) In: Otte D, Endler J (eds) Speciation and its consequences. Sinauer Associates, Sunderland, pp 3–27

    Google Scholar 

  • Ter Steege H (2010) How neutral is ecology? Biotropica 42:631

    Article  Google Scholar 

  • Thornhill NW (1993) The natural history of inbreeding and outbreeding: theoretical and empirical perspectives. The University of Chicago Press, Chicago

    Google Scholar 

  • Tjorve E (2003) Shapes and functions of specie-area curves: a review of possible models. J Biogeogr 30:827–835

    Article  Google Scholar 

  • Turelli M, Orr HA (2000) Dominance, epistasis and the genetics of postzygotic isolation. Genetics 154:1663–1679

    PubMed  CAS  Google Scholar 

  • Wright SJ (1940) Breeding structure of populations in relation to speciation. Am Nat 74:232–248

    Article  Google Scholar 

  • Wright SJ (1943) Isolation by distance. Genetics 28:114–138

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Karla Bertrand for helpful comments on the manuscript. This work was supported in part by CNPq and FAPESP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcus A. M. de Aguiar.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PS 2066 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baptestini, E.M., de Aguiar, M.A.M. & Bar-Yam, Y. The role of sex separation in neutral speciation. Theor Ecol 6, 213–223 (2013). https://doi.org/10.1007/s12080-012-0172-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12080-012-0172-2

Keywords

Navigation