Skip to main content

Towards a general formalization of encounter rates in ecology

Abstract

Although encounters between organisms are fundamental to many ecological processes, a general theory of encounters that accounts for random movements and probabilistic events has yet to be proposed. We present a framework for examining probabilistic encounters between arbitrarily moving searchers and immobile targets in continuous space and time. We define and contrast first encounter rates and mean encounter rates, which are generally not equal and depend on several properties of the process, including movement behaviors, the spatial scales of the encounter kernel, spatial distribution and birth–death dynamics of targets, and whether the encounters are destructive. Based on these considerations, we propose a taxonomy of encounter processes and discuss their functional relationships. Analytical approximations in several special cases are derived, leading to inference about general patterns. We identify, for example, cases (nondestructive, mean encounters) in which encounter rates are completely independent of movement velocity or tortuosity, and we quantify the dependence for cases (e.g., hard, first encounters and destructive encounters in a dynamic landscape) where there is a relationship. The analytical results lead to general qualitative conclusions, while the mathematical formalization and taxonomic organization provides a framework for studying and contrasting a broad range of encounter processes in ecology.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Anderson J (2010) Ratio-and predator-dependent functional forms for predators optimally foraging in patches. Am Nat 175:240–249

    PubMed  Article  Google Scholar 

  2. Anderson JJ, Gurarie E, Zabel RW (2005) Mean free-path length theory of predator–prey interactions: application to juvenile Salmon migration. Ecol Model 186:196–211

    Article  Google Scholar 

  3. Avgar T, Kuefler D, Fryxell J (2011) Linking rates of diffusion and consumption in relation to resources. Am Nat 178:182–190

    PubMed  Article  Google Scholar 

  4. Bartumeus F, Da Luz MGE, Viswanathan GM, Catalan J (2005) Animal search strategies: a quantitative random-walk analysis. Ecology 86:3078–3087

    Article  Google Scholar 

  5. Bartumeus F, Catalan J, Viswanathan G, Raposo E, da Luz M (2008) The influence of turning angles on the success of non-oriented animal searches. J Theor Biol 252:43–55

    PubMed  Article  CAS  Google Scholar 

  6. Berg HC (1983) Random walks in biology. Princeton University Press, Princeton

    Google Scholar 

  7. Block B, Jonsen I, Jorgensen S, Winship A, Shaffer S, Bograd S et al (2011) Tracking apex marine predator movements in a dynamic ocean. Nature 475:86–90

    PubMed  Article  CAS  Google Scholar 

  8. Borchers D, Efford M (2008) Spatially explicit maximum likelihood methods for capture–recapture studies. Biometrics 64:377–385

    PubMed  Article  CAS  Google Scholar 

  9. Boukal D, Berec L (2002) Single-species models of the Allee effect: extinction boundaries, sex ratios and mate encounters. J Theor Biol 218:375–394

    PubMed  Article  Google Scholar 

  10. Buckland ST, Anderson DR, Burnham KP, Laake JL, Borchers DL, Thomas L (2007) Advanced distance sampling: estimating abundance of biological populations. Oxford University Press, London

    Google Scholar 

  11. Clausius R (1859) On the mean length of the paths described by the separate molecules of gaseous bodies on the occurrence of molecular motion: together with some other remarks on the mechanical theory of heat. Philos Mag 17:81–91

    Google Scholar 

  12. Codling EA, Plank MJ, Benhamou S (2008) Random walk models in biology (review). J Roy Soc Interface 5:813–834

    Article  Google Scholar 

  13. Evans GT (1989) The encounter speed of moving predator and prey. J Plankton Res 11:415–417

    Article  Google Scholar 

  14. Gerritsen J, Strickler J (1977) Encounter probabilities and community structure in zooplankton: a mathematical model. J Fish Res Board Can 34:73–82

    Article  Google Scholar 

  15. Gurarie E, Anderson JJ, Zabel RW (2009) Incorporating population heterogeneity into analysis of animal dispersal and movement. Ecology 90:2233–2242

    PubMed  Article  Google Scholar 

  16. Gurarie E, Ovaskainen O (2011) Characteristic spatial and temporal scales unify models of animal movement. Am Nat 178:113–123

    PubMed  Article  Google Scholar 

  17. Hapca S, Crawford J, Young I (2009) Anomalous diffusion of heterogeneous populations characterized by normal diffusion at the individual level. J Roy Soc Interface 6:111–122

    Article  Google Scholar 

  18. Harrison P, Hanski I, Ovaskainen O (2011) Bayesian state-space modeling of metapopulation dynamics in the Glanville fritillary butterfly. Ecol Monogr 81:581–598

    Article  Google Scholar 

  19. Heinz SK, Conradt L, Wissel C, Frank K (2005) Dispersal behaviour in fragmented landscapes: deriving a practical formula for patch accessibility. Landsc Ecol 20:83–99

    Article  Google Scholar 

  20. Hutchinson J, Waser P (2007) Use, misuse and extensions of the “ideal gas” models of animal movement. Biol Rev 82:335–359

    PubMed  Article  Google Scholar 

  21. James A, Pitchford J, Plank M (2010) Efficient or inaccurate? Analytical and numerical modelling of random search strategies. Bull Math Biol 72:896–913

    PubMed  Article  Google Scholar 

  22. James A, Plank M, Brown R et al (2008) Optimizing the encounter rate in biological interactions: ballistic versus Lévy versus Brownian strategies. Phys Rev E 78:51128

    Article  CAS  Google Scholar 

  23. Kareiva PM, Shigesada N (1983) Analyzing insect movement as a correlated random walk. Oecologia 56:234–238

    Article  Google Scholar 

  24. Maxwell J (1860) Illustrations of the dynamical theory of gases: part 1. On the motions and collisions of perfectly elastic spheres. Philos Mag 19:19–32

    Google Scholar 

  25. McKenzie H, Lewis M, Merrill E (2009) First passage time analysis of animal movement and insights into the functional response. Bull Math Biol 71:107–129

    PubMed  Article  Google Scholar 

  26. Molnár P, Derocher A, Lewis M, Taylor M (2008) Modelling the mating system of polar bears: a mechanistic approach to the Allee effect. Proc R Soc B 275:217–226

    PubMed  Article  Google Scholar 

  27. Morales JM, Haydon DT, Frair J, Holsinger KE, Fryxell JM (2004) Extracting more out of relocation data: building movement models as mixtures of random walks. Ecology 85(9):2436–2445

    Article  Google Scholar 

  28. O’Brien J, Evans B, Browman H (1989) Flexible search tactics and efficient foraging in saltatory searching animals. Oecologia 80:100–110

    Article  Google Scholar 

  29. Okubo A (1980) Diffusion and ecological problems: modern perspectives. Springer, New York

    Google Scholar 

  30. Ovaskainen O (2008) Analytical and numerical tools for diffusion-based movement models. Theor Popul Biol 2:198–211

    Article  Google Scholar 

  31. Ovaskainen O, Cornell S (2006a) Asymptotically exact analysis of stochastic metapopulation dynamics with explicit spatial structure. Theor Popul Biol 69:13–33

    PubMed  Article  Google Scholar 

  32. Ovaskainen O, Cornell S (2006b) Space and stochasticity in population dynamics. Proc Natl Acad Sci 103:12781–12786

    PubMed  Article  CAS  Google Scholar 

  33. Ovaskainen O, Rekola H, Meyke E, Arjas E (2008) Bayesian methods for analyzing movements in heterogeneous landscapes from mark-recapture data. Ecology 89:542–554

    PubMed  Article  Google Scholar 

  34. Patlak C (1953a) A mathematical contribution to the study of orientation of organisms. Bull Math Biophys 15:431–476

    Article  Google Scholar 

  35. Patlak C (1953b) Random walk with persistence and external bias. Bull Math Biophys 15:311–338

    Article  CAS  Google Scholar 

  36. Patterson T, Thomas L, Wilcox C, Ovaskainen O, Matthiopoulos J (2008) State–space models of individual animal movement. Trends Ecol Evol 23:87–94

    Article  Google Scholar 

  37. Petrovskii S, Morozov A (2009) Dispersal in a statistically structured population: fat tails revisited. Am Nat 173:278–289

    PubMed  Article  Google Scholar 

  38. Redner S (2001) A guide to first-passage processes. Cambridge University Press, Cambridge

    Book  Google Scholar 

  39. Roland J, Keyghobadi N, Fownes S (2000) Alpine Parnassius butterfly dispersal: effects of landscape and population size. Ecology 81:1642–1653

    Google Scholar 

  40. Royle JA, Kéry M, Guélat J (2011) Spatial capture-recapture models for search-encounter data. Methods in Ecol Evol 2:602–611

    Article  Google Scholar 

  41. Skellam JG (1951) Random dispersal in theoretical populations. Biometrika 38:196–218

    PubMed  CAS  Google Scholar 

  42. Stephens D, Brown J, Ydenberg R (2007) Foraging: behavior and ecology. University of Chicago Press, Chicago

    Book  Google Scholar 

  43. Turchin P (1998) Quantitative analysis of movement: measuring and modeling population redistribution in animals and plants. Sinauer, Sunderland

    Google Scholar 

  44. Wirsing A, Cameron K, Heithaus M (2010) Spatial responses to predators vary with prey escape mode. Anim Behav 79:531–537

    Article  Google Scholar 

Download references

Acknowledgements

We thank Jim Anderson and Finn Laidre for inspiring many of the ideas in this manuscript. Len Thomas, Tiago Splitter and two anonymous reviewers provided close readings and useful suggestions. O.O. was funded by the Academy of Finland (grant 129636) and the European Research Council (ERC Starting Grant 205905).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Eliezer Gurarie.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

(TEX 17.0 KB)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gurarie, E., Ovaskainen, O. Towards a general formalization of encounter rates in ecology. Theor Ecol 6, 189–202 (2013). https://doi.org/10.1007/s12080-012-0170-4

Download citation

Keywords

  • Encounter rates
  • Animal movement
  • Encounter kernel
  • Characteristic scales
  • Correlated velocity movement
  • Mean field perturbation