Theoretical Ecology

, Volume 6, Issue 1, pp 45–56 | Cite as

Robustness of size–structure across ecological networks in pelagic systems

  • Paúl Gómez-Canchong
  • Renato A. Quiñones
  • Ulrich Brose
Original Paper


The study of biomass size distributions has become an important tool for addressing aquatic ecosystem complexity and the consequences of anthropogenic disturbances. However, it remains unclear how changes in pelagic food web topology affect the biomass size–structure. Employing a dynamic multispecies bioenergetic consumer-resource model, we simulated biomass trajectories over time in 10,000 virtual networks of varying topology to address which food web properties are important in determining size–structure in pelagic systems. The slopes of the normalized biomass size spectra (NBSS) and Pareto’s shape parameter (γ) of our modeled communities are consistent with theoretically expected values for steady-state systems and empirical values reported for several aquatic ecosystems. We found that the main drivers of the NBSS slope and Pareto’s γ were the slope of the relationship between body mass and trophic level, the maximum trophic level of the food web, and the stability of total community biomass. Our analyses showed a clear conservative trend in pelagic community size–structure as demonstrated by the robustness of the NBSS slope and Pareto’s γ against most of the topological changes in virtual networks. Nevertheless, these analyses also caution that major disturbances in large-bodied or top-trophic level individuals may disrupt this stable pattern.


Bioenergetics Ecological networks Generalized pareto distribution Normalized biomass size spectra Pelagic systems Predator–prey model 



We wish to thank the valuable support of the members of the Ecological Network Lab (Darmstadt, Germany). Paúl Gómez-Canchong was funded by a Doctoral and Short Term Stay scholarship provided by the Deutscher Akademischer Austausch Dienst, (DAAD, Germany). Renato A. Quiñones and Paúl Gómez-Canchong were funded by the COPAS-Sur Austral Program (Programa Bicentenario de Ciencia y Tecnología Grant PFB-31/2007, CONICYT, Chile). Ulrich Brose acknowledges funding by the Deutsche Forschungsgemeinschaft (DFG, BR 2315/4-1). The authors would like to thank three anonymous reviewers for their valuable comments and suggestions to improve the quality of the paper.

Supplementary material

12080_2011_156_MOESM1_ESM.doc (260 kb)
ESM 1 DOC 260 kb


  1. Arino O, Shin Y-J, Mullon C (2004) A mathematical derivation of size spectra in fish populations. C R Biologies 327:245–254PubMedCrossRefGoogle Scholar
  2. Bascompte J, Melian CJ, Sala E (2005) Interaction strength combinations and the overfishing of a marine food web. Proc Natl Acad Sci 102:5443–5447PubMedCrossRefGoogle Scholar
  3. Beddington JR (1975) Mutual interference between parasites or predators and its effect on searching efficiency. J Anim Ecol 44:331–340CrossRefGoogle Scholar
  4. Berlow EL, Brose U, Martinez ND (2008) The “Goldilocks factor” in food webs. Proc Natl Acad Sci 105:4079–4080PubMedCrossRefGoogle Scholar
  5. Berlow EL, Dunne JA, Martinez ND, Stark PB, Williams RJ, Brose U (2009) Simple prediction of interaction strengths in complex food webs. Proc Natl Acad Sci 106:187–191PubMedCrossRefGoogle Scholar
  6. Bianchi G, Gislason H, Graham K, Hill L, Jin X, Koranteng K, Manickchand-Heileman S, Payá I, Sainsbury K, Sanchez F, Zwanenburg K (2000) Impact of fishing on size composition and diversity of demersal fish communities. ICES J Mar Sci 57:558–571CrossRefGoogle Scholar
  7. Blanchard JL, Dulvy NK, Jennings S, Ellis JR, Pinnegar JK, Tidd A, Kell LT (2005) Do climate and fishing influence size-based indicators of Celtic Sea fish community structure? ICES J Mar Sci 62:405–411CrossRefGoogle Scholar
  8. Blanco JM, Echevarría F, García C (1994) Dealing with size spectra: some conceptual and mathematical problems. Sci Mar 58:17–29Google Scholar
  9. Blueweiss L, Fox H, Kudzma V, Nakashima D, Peters R, Sams S (1978) Relationships between body size and some life history parameters. Oecologia 37:257–272CrossRefGoogle Scholar
  10. Brose U, Berlow EL, Martinez ND (2005a) Scaling up keystone effects from simple to complex ecological networks. Ecol Lett 8:1317–1325CrossRefGoogle Scholar
  11. Brose U, Pavao-Zuckerman M, Eklof A, Bengtsson J, Berg M, Cousins SH, Mulder C, Verhoef HA, Wolters V (2005b) Spatial aspects of food webs. In: de Ruiter PC, Wolters V, Moore JC (eds) Dynamic food webs: multispecies assemblages, ecosystem development and environmental change. Academic Press, New York, pp 463–469Google Scholar
  12. Brose U, Williams RJ, Martinez ND (2006a) Allometric scaling enhances stability in complex food webs. Ecol Lett 9:1228–1236PubMedCrossRefGoogle Scholar
  13. Brose U, Jonsson T, Berlow EL, Warren P, Banasek-Richter C, Bersier LF, Blanchard JL, Brey T, Carpenter SR, Cattin MF, Cushing L, Dawah HA, Dell T, Edwards F, Harper-Smith S, Jacob U, Ledger ME, Martinez ND, Memmott J, Mintenbeck K, Pinnegar JK, Rall BC, Rayner TS, Reuman DC, Ruess L, Ulrich W, Williams RJ, Woodward G, Cohen JE (2006b) Consumer-resource body-size relationships in natural food webs. Ecology 87(10):2411–2417PubMedCrossRefGoogle Scholar
  14. Brown JH, Gillooly JF (2003) Ecological food webs: high-quality data facilitate theoretical unification. Proc Natl Acad Sci 100:1467–1468PubMedCrossRefGoogle Scholar
  15. Brown JH, Gillooly JF, Allen AP, Savage VM, West GB (2004) Toward a metabolic theory of ecology. Ecology 85:1771–1789CrossRefGoogle Scholar
  16. Cicerone R, Orr J, Brewer P, Haugan P, Merlivat L, Ohsumi T, Pantoja S, Poertner HO, Urban E (2004) The ocean in a high-CO2 world. Oceanography 17(3):72–78CrossRefGoogle Scholar
  17. Clauset A, Shalizi CR, Newman MEJ (2009) Power-law distributions in empirical data. SIAM Rev 51:661–703CrossRefGoogle Scholar
  18. Cohen JE, Carpenter SR (2005) Species’ average body mass and numerical abundance in a community food web: statistical questions in estimating the relationship. In: de Ruiter PC, Wolters V, Moore JC (eds) Dynamic food webs: multispecies assemblages, ecosystem development and environmental change. Academic Press, New York, pp 137–156Google Scholar
  19. Cohen JE, Jonsson T, Carpenter SR (2003) Ecological community description using the food web, species abundance, and body size. Proc Natl Acad Sci U S A 100:1781–1786PubMedCrossRefGoogle Scholar
  20. Cousins SH (1985) Ecologists build pyramids again. New Sci 106:50–54Google Scholar
  21. Cury P, Shannon L, Shin Y (2003) The functioning of marine ecosystems: a fisheries perspective. In: Sinclair M, Valdimarsson G (eds) Responsible fisheries in the marine ecosystem. FAO, Rome, pp 103–123CrossRefGoogle Scholar
  22. Daan N, Gislason H, Pope JG, Rice JC (2005) Changes in the North Sea fish community: evidence of indirect effects of fishing? ICES J Mar Sci 62:177–188CrossRefGoogle Scholar
  23. De Roos AM, Schellekens T, Van Kooten T, Van De Wolfshaar K, Claessen D, Persson L (2008) Simplifying a physiologically structured population model to a stage-structured biomass model. Theor Popul Biol 73:47–62PubMedCrossRefGoogle Scholar
  24. DeAngelis DL, Goldstein RA, O’Neill RV (1975) A model for trophic interactions. Ecology 56:881–892CrossRefGoogle Scholar
  25. Dickie LM, Kerr SR, Boudreau PR (1987) Size-dependent processes underlying regularities in ecosystem structure. Ecol Monogr 57:233–250CrossRefGoogle Scholar
  26. Digel C, Riede JO, Brose U (2011) Body sizes, cumulative and allometric degree distributions across natural food webs. Oikos 120(4):503–509CrossRefGoogle Scholar
  27. Drgas A, Radziejewska T, Warzocha J (1998) Biomass size spectra of near-shore shallow-water benthic communities in the Gulf of Gdansk (Southern Baltic Sea). PSZN Mar Ecol 19:209–228CrossRefGoogle Scholar
  28. Dunne JA, Williams RJ, Martinez ND (2004) Network structure and robustness of marine food webs. Mar Ecol Prog Ser 273:291–302CrossRefGoogle Scholar
  29. Duplisea DE (2000) Benthic organism biomass size-spectra in the Baltic Sea in relation to the sediment environment. Limnol Oceanog 45(3):558–568CrossRefGoogle Scholar
  30. Ebenman B, Law R, Borrvall C (2004) Community viability analysis: the response of ecological communities to species loss. Ecology 85:2591–2600CrossRefGoogle Scholar
  31. Emmerson MC, Raffaelli D (2004) Predator–prey body size, interaction strength and the stability of a real food web. J Anim Ecol 73:399–409CrossRefGoogle Scholar
  32. Fussmann GF, Blasius B (2005) Community response to enrichment is highly sensitive to model structure. Biol Lett 1:9–12PubMedCrossRefGoogle Scholar
  33. Gaedke U (1993) Ecosystem analysis based on biomass-size distributions: a case study of a plankton community in a large lake. Limnol Oceanogr 38:112–127CrossRefGoogle Scholar
  34. Gaudard M, Ramsey P, Stephens M (2006) Interactive data mining and design of experiments: the JMP® partition and custom design platforms. North Haven GroupGoogle Scholar
  35. Gillooly JF, Brown JH, West GB, Savage VM, Charnov EL (2001) Effects of size and temperature on metabolic rate. Science 293:2248–2251PubMedCrossRefGoogle Scholar
  36. Gilpin ME (1972) Enriched predator–prey systems: theoretical stability. Science 177:902–904PubMedCrossRefGoogle Scholar
  37. Gin KYH, Guo J, Cheong HF (1998) A size-based ecosystem model for pelagic waters. Ecol Model 112:53–72CrossRefGoogle Scholar
  38. Gislason H, Rice J (1998) Modelling the response of size and diversity spectra of fish assemblages to changes in exploitation. ICES J Mar Sci 55:362–370CrossRefGoogle Scholar
  39. Han BP, Straskraba M (1998) Size dependence of biomass spectra and population density. I. The effect of size scales and size intervals. J Theor Biol 191:259–265CrossRefGoogle Scholar
  40. Hardy AC (1924) The herring in relation to its animate environment, part 1. The food and feeding habits of the herring. Fish Investig Lond Ser II 7:1–53Google Scholar
  41. Hughes T, Bellwood D, Folke C, Steneck R, Wilson J (2005) New paradigms for supporting the resilience of marine ecosystems. Trend Ecol Evol 20(7):381–386CrossRefGoogle Scholar
  42. Jackson JBC, Kirby MX, Berger WH, Bjorndal KA, Botsford LW, Bourque BJ, Bradbury RH, Cooke R, Erlandson J, Estes JA, Hughes TP, Kidwell S, Lange CB, Lenihan HS, Pandolfi JM, Peterson CH, Steneck RS, Tegnar M, Warner RR (2001) Historical overfishing and the recent collapse of coastal ecosystems. Science 293:629–638PubMedCrossRefGoogle Scholar
  43. Jennings S, Dinmore TA, Duplisea DE, Warr KJ, Lancaster JE (2001) Trawling disturbance can modify benthic production processes. J Anim Ecol 70:459–475CrossRefGoogle Scholar
  44. Jeschke JM, Koop M, Tollrian R (2004) Consumer–food systems: why type I functional responses are exclusive to filter feeders. Biol Rev 79:337–349PubMedCrossRefGoogle Scholar
  45. Jonsson T, Ebenman B (1998) Effects of predator–prey body size ratios on the stability of food chains. J Theor Biol 193:407–417PubMedCrossRefGoogle Scholar
  46. Lima ID, Olson DB, Doney SC (2002) Intrinsic dynamics and system stability properties of size-structured pelagic ecosystem models. J Plankton Res 24:533–556CrossRefGoogle Scholar
  47. Lindeman RL (1942) The trophic–dynamic aspect of ecology. Ecology 23:399–418CrossRefGoogle Scholar
  48. Link JS, Stockhausen WT, Methratta ET et al (2005) Food-web theory in marine ecosystems. In: Belgrano A, Scharler U (eds) Aquatic food webs: an ecosystem approach. Oxford University Press, New York, pp 98–113CrossRefGoogle Scholar
  49. Lundvall D, Svanbäck R, Persson L, Byström P (1999) Size-dependent predation in piscivores: interactions between predator foraging and prey avoidance abilities. Can J Fish Aquat Sci 56:1285–1292Google Scholar
  50. Marquet PA, Quiñones RA, Abades S, Labra F, Tognelli M, Arim M, Rivadeneira M (2005) Scaling and power-laws in ecological systems. J Exp Biol 208:1749–1769PubMedCrossRefGoogle Scholar
  51. Maury O, Faugeras B, Shin YJ, Poggiale JC, Ben Ari TC, Marsac F (2007) Modeling environmental effects on the size-structured energy flow through marine ecosystems. Part 1: the model. Prog Oceanogr 74(4):479–499CrossRefGoogle Scholar
  52. May RM (1973) Stability and complexity in model ecosystems. Princeton University Press, PrincetonGoogle Scholar
  53. McCann K, Hastings A (1998) Re-evaluating the omnivory–stability relationship in food webs. Proc R Soc Lond B Biol Sci 264(1385):1249–1254CrossRefGoogle Scholar
  54. McCann K, Yodzis P (1994) Biological conditions for chaos in a three-species food chain. Ecology 75:561–564CrossRefGoogle Scholar
  55. Neutel A-M, Heesterbeek JAP, De Ruiter PC (2002) Stability in real food webs: weak links in long loops. Science 296:1120–1123PubMedCrossRefGoogle Scholar
  56. Pauly D, Christensen V, Dalsgaard J, Froese R, Torres FC Jr (1998) Fishing down marine food webs. Science 279:860–863PubMedCrossRefGoogle Scholar
  57. Pauly D, Christensen V, Walters C (2000) Ecopath, Ecosim, and Ecospace as tools for evaluating ecosystem impact of fisheries. ICES J Mar Sci 57:697–706CrossRefGoogle Scholar
  58. Perry AL, Low PJ, Ellis JR, Reynolds JD (2005) Climate change and distribution shifts in marine fishes. Science 308:1912–1915PubMedCrossRefGoogle Scholar
  59. Petersen CGJ (1918) The sea bottom and its production of fish food. Rep Dan Biol Stn 25:1–62Google Scholar
  60. Platt T, Denman K (1977) Organization in the pelagic ecosystem. Helgol Wiss Meeresunters 30:575–581CrossRefGoogle Scholar
  61. Platt T, Denman K (1978) The structure of the pelagic marine ecosystems. Rapp P-V Reun Cons Int Explor Mer 173:60–65Google Scholar
  62. Platt T, Lewis MR, Geider R (1984) Thermodynamics of the pelagic ecosystem: elementary closure conditions for biological production in the open ocean. Flows of energy and materials in marine ecosystems: Theory and practice. NATO Conference Series 4. Mar Sci 13:49–84Google Scholar
  63. Polovina JJ (1984) Model of a coral reef ecosystem. I. The ECOPATH model and its application to French frigate shoals. Coral Reefs 3:1–11CrossRefGoogle Scholar
  64. Pope JG, Rice JC, Daan N, Jennings S, Gislason H (2006) Modelling an exploited marine fish community with 15 parameters e results from a simple size-based model. ICES J Mar Sci 63:1029–1044Google Scholar
  65. Quiñones RA, Platt T, Rodríguez J (2003) Patterns of biomass size spectra from oligotrophic waters of the Northwest Atlantic. Prog Oceanogr 57:405–427CrossRefGoogle Scholar
  66. Quintana XD, Boix D, Badosa A, Brucet S, Compte J, Gascón S, López-Flores R, Sala J, Moreno_Amich R (2006) Community structure in mediterranean shallow lentic ecosystems: size-based vs. taxon-based approaches. Limnetica 25(1–2):303–320Google Scholar
  67. Quiroga E, Quiñones RA, Palma M, Sellanes J, Gallardo VA, Gerdes D, Rowe G (2005) Biomass size-spectra of macrobenthic communities in the oxygen minimum zone off Chile. Estuar Coast Shelf Sci 62:217–231CrossRefGoogle Scholar
  68. Rall BC, Guill C, Brose U (2007) Food-web connectance and predator interference dampen the paradox of enrichment. Oikos 117(2):202–213CrossRefGoogle Scholar
  69. Rall BC, Kalinkat G, Vucic-Pestic O, Ott D, Brose U (2011) Taxonomic versus allometric constraints on nonlinear interaction strengths. Oikos 120(4):483–492CrossRefGoogle Scholar
  70. Real LA (1977) Kinetics of functional response. Am Nat 111:289–300Google Scholar
  71. Riede JO, Rall BC, Banasek-Richter C, Navarrete SA, Wieters EA, Emmerson MC, Jacob U, Brose U (2010) Scaling of food web properties with diversity and complexity across ecosystems. Adv Ecol Res 42:139–170CrossRefGoogle Scholar
  72. Riede JO, Brose U, Ebenman B, Jacob U, Thompson R, Townsend CR, Jonsson T (2011) Stepping in Elton’s footprints: a general scaling model for body masses and trophic levels across ecosystems. Ecol Lett 14(2):169–178PubMedCrossRefGoogle Scholar
  73. Rodríguez J, Mullin M (1986) Relation between biomass and body weight of plankton in a steady state oceanic ecosystem. Limnol Oceanogr 31(2):361–370CrossRefGoogle Scholar
  74. Rosenzweig ML (1971) Paradox of enrichment: destabilization of exploitation of ecosystems in ecological time. Science 171:385–387PubMedCrossRefGoogle Scholar
  75. Rossberg AG, Ishii R, Amemiya T, Itoh K (2008) The top-down mechanism for body-mass–abundance scaling. Ecology 89(2):567–580PubMedCrossRefGoogle Scholar
  76. Rothschild BJ, Osborn TR (1988) Small-scale turbulence and plankton contact rates. J Plankton Res 10:465–474CrossRefGoogle Scholar
  77. Schwinghamer P (1981) Characteristic size distributions of integral benthic communities. Can J Fish Aquat Sci 38:1255–1263CrossRefGoogle Scholar
  78. Schwinghamer P (1983) Generating ecological hypotheses from biomass spectra using causal analysis: a benthic example. Mar Ecol Prog Ser 13:151–166CrossRefGoogle Scholar
  79. Schwinghamer P (1985) Observations on size-structure and pelagic coupling of some shelf and abyssal benthic communities. In: Gibbs PE (ed) Proceedings 19th European Marine Biology Symposium. Cambridge University Press, Cambridge, pp 347–359Google Scholar
  80. Sheldon RW, Prakash A, Sutcliffe WH Jr (1972) The size distribution of particles in the ocean. Limnol Oceanogr 17:327–340CrossRefGoogle Scholar
  81. Sheldon RW, Sutcliffe WH, Paranjape MA (1977) Structure of the plagic food chain and relationship between plankton and fish production. J Fish Res Board Can 34:2344–2353CrossRefGoogle Scholar
  82. Shin YJ, Cury P (2004) Using an individual-based model of fish assemblages to study the response of size spectra to changes in fishing. Can J Fish Aquat Sci 61:414–431CrossRefGoogle Scholar
  83. Shurin JB, Gruner DS, Hillebrand H (2006) All wet or dried up? Real differences between aquatic and terrestrial food webs. Proc R Soc B 273:1–9PubMedCrossRefGoogle Scholar
  84. Skalski GT, Gilliam JF (2001) Functional responses with predator interference: viable alternatives to the Holling type II model. Ecology 82:3083–3092CrossRefGoogle Scholar
  85. Solan M, Cardinale BJ, Downing AL, Engelhardt KAM, Ruesink JL, Srivastava DS (2004) Extinction and ecosystem function in the marine benthos. Science 306:1177–1180PubMedCrossRefGoogle Scholar
  86. Sprules WG, Munawar M (1986) Plankton size spectra in relation to ecosystem productivity, size and perturbation. Can J Fish Aquat Sci 43:1789–1794CrossRefGoogle Scholar
  87. Stobberup KA, Inejih CAO, Traore S, Monteiro C, Amorim P, Erzini K (2005) Analysis of size spectra off northwest Africa: a useful indicator in tropical areas? ICES J Mar Sci 62:424–429CrossRefGoogle Scholar
  88. Sturges HA (1926) The choice of a class interval. J Am Stat Assoc 21:65–66CrossRefGoogle Scholar
  89. Trenkel VM, Rochet MJ (2003) Performance indicators derived from abundance estimates for detecting the impact of fishing on a fish community. Can J Fish Aqua Sci 60:67–85CrossRefGoogle Scholar
  90. Vidondo B, Prairie Y, Blanco JM, Duarte CM (1997) Some aspects of the análisis of size spectra in aquatic ecology. Limnol Ocean 42(1):184–192CrossRefGoogle Scholar
  91. Vucic-Pestic O, Rall BC, Kalinkat G, Brose U (2010) Allometric functional response model: body masses constrain interaction strengths. J Anim Ecol 79:249–256PubMedCrossRefGoogle Scholar
  92. Walters C, Christensen V, Pauly D (1997) Structuring dynamic models of exploited ecosystems from trophic mass balance assessments. Rev Fish Biol Fish 7(2):139–172CrossRefGoogle Scholar
  93. Warwick RM (1984) Species size distributions in marine benthic communities. Oecologia 61:32–41CrossRefGoogle Scholar
  94. West GB, Brown JH (2005) The origin of allometric scaling laws in biology from genomes to ecosystems: towards a quantitative unifying theory of biological structure and organization. J Exp Biol 208:1575–1592PubMedCrossRefGoogle Scholar
  95. Whitfield J (2004) Ecology’s big hot idea. PLoS Biol 2:2023–2027Google Scholar
  96. Williams RJ, Martinez ND (2000) Simple rules yield complex food webs. Nature 404:180–183PubMedCrossRefGoogle Scholar
  97. Williams RJ, Martinez ND (2004a) Limits to trophic levels and omnivory in complex food webs: theory and data. Am Nat 163:458–468PubMedCrossRefGoogle Scholar
  98. Williams RJ, Martinez ND (2004b) Stabilizaton of chaotic and non-permanent food web dynamics. Eur Phys J B 38:297–303CrossRefGoogle Scholar
  99. Woodward G, Ebenman B, Emmerson M, Montoya JM, Olesen JM, Valido A, Warren PH (2005) Body size in ecological networks. Trend Ecol Evol 20(7):402–409CrossRefGoogle Scholar
  100. Worm B, Duffy E (2003) Biodiversity, productivity and stability in real food webs. Trend Ecol Evol 18(12):628–632CrossRefGoogle Scholar
  101. Yodzis P (1998) Local trophodynamics and the interaction of marine mammals and fisheries in the Benguela ecosystem. J Anim Ecol 67:635–658CrossRefGoogle Scholar
  102. Yodzis P, Innes S (1992) Body size and consumer-resource dynamics. Am Nat 139:1151–1175CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Paúl Gómez-Canchong
    • 1
    • 2
  • Renato A. Quiñones
    • 1
    • 2
  • Ulrich Brose
    • 3
  1. 1.Graduate Program in Oceanography, Department of OceanographyUniversity of ConcepciónConcepciónChile
  2. 2.Center for Oceanographic Research in the Eastern South Pacific (COPAS Center –FONDAP-CONICYT), Facultad de Ciencias Naturales y OceanográficasUniversity of ConcepciónConcepciónChile
  3. 3.Systemic Conservation Biology, Department of BiologyGeorg-August University GoettingenGoettingenGermany

Personalised recommendations