Theoretical Ecology

, Volume 4, Issue 4, pp 467–478 | Cite as

Emergence and maintenance of biodiversity in an evolutionary food-web model

  • Åke Brännström
  • Nicolas Loeuille
  • Michel Loreau
  • Ulf Dieckmann
Original Paper


Ecological communities emerge as a consequence of gradual evolution, speciation, and immigration. In this study, we explore how these processes and the structure of the evolved food webs are affected by species-level properties. Using a model of biodiversity formation that is based on body size as the evolving trait and incorporates gradual evolution and adaptive radiation, we investigate how conditions for initial diversification relate to the eventual diversity of a food web. We also study how trophic interactions, interference competition, and energy availability affect a food web’s maximum trophic level and contrast this with conditions for high diversity. We find that there is not always a positive relationship between conditions that promote initial diversification and eventual diversity, and that the most diverse food webs often do not have the highest trophic levels.


Food-web structure Biodiversity Evolution Coevolution Adaptive dynamics Adaptive radiation 


  1. Abrams PA (1993) Effect of increased productivity on the abundances of trophic levels. Am Nat 141:351–371CrossRefGoogle Scholar
  2. Abrams PA (1997) Evolutionary responses of foraging-related traits in unstable predator-prey systems. Evol Ecol 11:673–686CrossRefGoogle Scholar
  3. Adams SM, Kimmel BL, Ploskey GR (1983) Sources of organic matter for reservoir fish production: a trophic-dynamics analysis. Can J Fish Aquat Sci 40:1480–1495CrossRefGoogle Scholar
  4. Bastolla U, Lässig M, Manrubia SC, Valleriani A (2005) Biodiversity in model ecosystems, ii: species assembly and food web structure. J Theor Biol 235:531–539PubMedCrossRefGoogle Scholar
  5. Bergelson J, Dwyer G, Emerson J (2001) Models and data on plant-enemy coevolution. Annu Rev Genet 35:469–499PubMedCrossRefGoogle Scholar
  6. Brose U, Osling A, Harrison K, Martinez ND (2004) Unified spatial scaling of species and their trophic interactions. Nature 428:167–171PubMedCrossRefGoogle Scholar
  7. Buckling A, Rainey PB (2002a) Antagonistic coevolution between a bacterium and a bacteriophage. Proc R Soc Lond B 269:931–936CrossRefGoogle Scholar
  8. Buckling A, Rainey PB (2002b) The role of parasites in sympatric and allopatric host diversification. Nature 420:496–499PubMedCrossRefGoogle Scholar
  9. Caldarelli G, Higgs P, McKane A (1998) Modelling coevolution in multispecies communities. J Theor Biol 193:345–358PubMedCrossRefGoogle Scholar
  10. Cattin M, Bersier L, Banasek-Richter C, Baltensperger R, Gabriel J (2004) Phylogenetic constraints and adaptation explain food web structure. Nature 427:835–839PubMedCrossRefGoogle Scholar
  11. Chase JM, Leibold MA (2002) Spatial scale dictates the productivity-biodiversity relationship. Nature 416:427–430PubMedCrossRefGoogle Scholar
  12. Christensen K, di Collobiano SA, Hall M, Jensen HJ (2002) Tangled nature: a model of evolutionary ecology. J Theor Biol 216:73–84PubMedCrossRefGoogle Scholar
  13. Cohen J, Briand F, Newman C (1990) Community food webs: data and theory. Springer Verlag, BerlinGoogle Scholar
  14. Díaz S, Cabido M (2001) Vive la différence: plant functional diversity matters to ecosystem processes. Trends Ecol Evol 16:646–655CrossRefGoogle Scholar
  15. Dieckmann U, Law R (1996) The dynamical theory of coevolution: a derivation from stochastic ecological processes. Trends Ecol Evol 34:579–612Google Scholar
  16. Drake JA (1990) The mechanics of community assembly and succession. J Theor Biol 147:213–233CrossRefGoogle Scholar
  17. Drossel B, Higgs P, McKane A (2001) The influence of predator-prey population dynamics on the long-term evolution of food web structure. J Theor Biol 208:91–107PubMedCrossRefGoogle Scholar
  18. Friesen M, Saxer G, Travisano M, Doebeli M (2004) Experimental evidence for sympatric ecological diversification due to frequency-dependent competition in Escherichia coli. Evolution 58(2):245–260PubMedGoogle Scholar
  19. Geritz SAH, Kisdi E, Meszéna G, Metz JAJ (1998) Evolutionary singular strategies and the adaptive growth and branching of the evolutionary tree. Evol Ecol 12:35–57CrossRefGoogle Scholar
  20. Gillespie JH (2004) Population genetics: a concise guide. The John Hopkins University PressGoogle Scholar
  21. Grimmett GR, Stirzaker DR (1992) Probability and random processes, 2nd edn. The Clarendon Press Oxford University Press, New YorkGoogle Scholar
  22. Habets MGJL, Rozen DE, Hoekstra RF, Arjan J, De Visser AGM (2006) The effect of population structure on the adaptive radiation of microbial populations evolving in spatially structured environments. Ecol Lett 9:1041–1048PubMedCrossRefGoogle Scholar
  23. Hector A, Schmid B, Beierkuhnlein C, Caldeira MC, Diemer M, Dimitrakopoulos PG, Finn JA, Freitas H, Giller PS, Good J, Harris R, Högberg P, Huss-Danell K, Joshi J, Jumpponen A, Körner C, Leadley PW, Loreau M, Minns A, Mulder CPH, O’Donovan G, Otway SJ, Pereira JS, Prinz A, Read DJ, Scherer-Lorenzen M, Schulze ED, Siamantziouras ASD, Spehn EM, Terry AC, Troumbis AY, Woodward FI, Yachi S, Lawton JH (1999) Plant diversity and productivity experiments in european grasslands. Science 286:1123–1127PubMedCrossRefGoogle Scholar
  24. Hofbauer J, Sigmund K (1998) Evolutionary games and population dynamics. Cambridge University Press, Cambridge, UKGoogle Scholar
  25. Hooper DU, Chapin FS, Ewel JJ, Hector A, Inchausti P, Lavorel S, Lawton JH, Lodge DM, Loreau M, Naeem S, Schmid B, Setl H, Symstad AJ, Vandermeer J, Wardle DA (2005) Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol Monogr 75:3–35CrossRefGoogle Scholar
  26. Ito HC, Dieckmann U (2007) A new mechanism for recurrent adaptive radiations. Am Nat 170:E96–E111CrossRefGoogle Scholar
  27. Ito HC, Ikegami T (2006) Food-web formation with recursive evolutionary branching. J Theor Biol 238:1–10PubMedCrossRefGoogle Scholar
  28. Ives AR, Klug JL, Gross K (2000) Stability and species richness in complex communities. Ecol Lett 3:399–411CrossRefGoogle Scholar
  29. Jansen VAA, Kokkoris GD (2003) Complexity and stability revisited. Ecol Lett 6:498–502CrossRefGoogle Scholar
  30. Jennings S, Warr KJ (2003) Smaller predator-prey size ratios in longer food chains. Proc R Soc Lond B 270:1413–1417CrossRefGoogle Scholar
  31. Kassen R, Rainey PB (2004) The ecology and genetics of microbial diversity. Annu Rev Microbiol 58:207–231PubMedCrossRefGoogle Scholar
  32. Kinzig AP, Pacala SW, Tilman D (eds) (2001) The functional consequences of biodiversity: empirical progress and theoretical extensions. Princeton University PressGoogle Scholar
  33. Klak C (2004) Unmatched tempo of evolution in southern african semi-desert ice plants. Nature 427:63–65PubMedCrossRefGoogle Scholar
  34. Kondoh M (2003) Foraging adaptation and the relationship between food-web complexity and stability. Science 299:1388–1391PubMedCrossRefGoogle Scholar
  35. Law R, Morton D (1996) Permanence and the assembly of ecological communities. Ecology 77(3):762–775CrossRefGoogle Scholar
  36. Loeuille N, Loreau M (2009) Emergence of complex food web structure in community evolution models. In: Verhoef HA, Morin PJ (eds) Community ecology, Oxford University PressGoogle Scholar
  37. Loeuille N, Loreau M (2005) Evolutionary emergence of size structured food webs. Proc Natl Acad Sci USA 102(16):5761–5766PubMedCrossRefGoogle Scholar
  38. Loeuille N, Loreau M, Ferrière R (2002) Consequences of plant-herbivore coevolution on the dynamics and functioning of ecosystems. J Theor Biol 217:369–381PubMedCrossRefGoogle Scholar
  39. Loreau M, Naeem S, Inchausti P, Bengtsson J, Grime JP, Hector A, Hooper DU, Huston MA, Raffaelli D, Schmid B, Tilman D, Wardle DA (2001) Biodiversity and ecosystem functioning: current knowledge and future challenges. Science 294:804–808PubMedCrossRefGoogle Scholar
  40. Loreau M, Naeem S, Inchausti P (eds)(2002) Biodiversity and ecosystem functioning: synthesis and perspectives. Oxford University PressGoogle Scholar
  41. Macarthur RH, Wilson EO (2001) The theory of island biogeography. Princeton University PressGoogle Scholar
  42. Massin N, Gonzalez A (2006) Adaptive radiation in a fluctuating environment: disturbance affects the evolution of diversity in a bacterial microcosm. Evol Ecol Res 8:471–481Google Scholar
  43. May RM (1972) Will a large complex system be stable? Nature 238:413–414PubMedCrossRefGoogle Scholar
  44. McKane AJ (2004) Evolving complex food webs. Eur Phys J B 38:287–295CrossRefGoogle Scholar
  45. McLean RC, Dickson A, Bell G (2005) Resource competition and adaptive radiation in a microbial microcosm. Ecol Lett 8:38–46CrossRefGoogle Scholar
  46. Morton D, Law R (1997) Regional species pools and the assembly of local ecological communities. J Theor Biol 187:321–331CrossRefGoogle Scholar
  47. Naeem S, Thompson LJ, Lawler SP, Lawton JH, Woodfin RM (1994) Declining biodiversity can alter the performance of ecosystems. Nature 368:734–737CrossRefGoogle Scholar
  48. Naeem S, Bunker DE, Hector A, Loreau M, Perrings C (eds) (2009) Biodiversity, ecosystem functioning, and human wellbeing: an ecological and economic perspective. Oxford University PressGoogle Scholar
  49. Nosil P, Crespi BJ (2006) Experimental evidence that predation promotes divergence in adaptive radiation. Proc Natl Acad Sci USA 103:9090–9095PubMedCrossRefGoogle Scholar
  50. Odum WE, Heald EJ (1975) The detritus-based food web of an estuarine mangrove community. In: Cronin L (ed) Estuarine research. Chemistry biology and the estuarine system, vol 1, Academic Press, LondonGoogle Scholar
  51. Oksanen L, Fretwell SD, Arruda J, Niemela P (1981) Exploitation ecosystems in gradients of primary productivity. Am Nat 118:240–261CrossRefGoogle Scholar
  52. Persson L, Diehl S, Johansson L, Hamrin SF (1992) Interactions in temperate lake ecosystems: a test of food chain theory. Am Nat 140:59–84CrossRefGoogle Scholar
  53. Peters RH (1983) The ecological implications of body size. Press Syndicate of the University Of Cambridge, Cambridge, UKGoogle Scholar
  54. Pimm SL, Lawton JH (1977) The number of trophic levels in ecological communities. Nature 268:329–331CrossRefGoogle Scholar
  55. Post DM, Pace ML, Hairston NGJ (2000) Ecosystem size determines food chain length in lakes. Nature 405:1047–1049PubMedCrossRefGoogle Scholar
  56. Post WM, Pimm SL (1983) Community assembly and food web stability. Math Biosci 64:169–192CrossRefGoogle Scholar
  57. Press WH, Teukolsky SA, Vetterling WT, William Y, Flannery BP (1992) Numerical recipes in C, 2nd edn. Cambridge University Press, Cambridge, the art of scientific computingGoogle Scholar
  58. Rainey PB, Travisano M (1998) Adaptive radiation in a heterogeneous environment. Nature 394:69–73PubMedCrossRefGoogle Scholar
  59. Rosenzweig ML (1995) Species diversity in space and time. Cambridge University PressGoogle Scholar
  60. Rossberg AG, Matsuda H, Amemiya T, Itoh K (2005) An explanatory model for food-web structure and evolution. Ecological Complexity 312:312–321CrossRefGoogle Scholar
  61. Rossberg AG, Matsuda H, Amemiya T, Itoh K (2006) Food webs: experts consuming families of experts. J Theor Biol 241:552–563PubMedCrossRefGoogle Scholar
  62. Rossberg AG, Ishii R, Amemiya T, Itoh K (2008) The top-down mechanism for body mass–abundance scaling. Ecology 89(2):567–580PubMedCrossRefGoogle Scholar
  63. Saloniemi I (1993) A coevolutionary predator-prey model with quantitative characters. Am Nat 141(6):880–896PubMedCrossRefGoogle Scholar
  64. Steiner CF, Leibold MA (2004) Cyclic assembly trajectories and scale-dependent productivity-diversity relationship. Ecology 85:107–113CrossRefGoogle Scholar
  65. Stocks R, McPeek MA (2006) A tale of two diversifications: reciprocal habitat shifts to fill ecological space along the pond permanence gradient. Am Nat 168:50–72CrossRefGoogle Scholar
  66. Tilman D, Wedin D, J K (1996) Productivity and sustainability influenced by biodiversity in grassland ecosystems. Nature 379:718–720CrossRefGoogle Scholar
  67. Tokita K, Yasutomi A (2006) Emergence of a complex and stable network in a model ecosystem with extinction and mutation. Theor Popul Biol 63:131–146CrossRefGoogle Scholar
  68. Williams RJ, Martinez ND (2000) Simple rules yield complex food webs. Nature 404:180–183PubMedCrossRefGoogle Scholar
  69. Worm B, Duffy JE (2003) Biodiversity, productivity and stability in real food webs. Trends Ecol Evol 18(12):628–632CrossRefGoogle Scholar
  70. Yodzis P (1989) Introduction to theoretical ecology. Harper & RowGoogle Scholar
  71. Yoshida K (2003) Dynamics of evolutionary patterns of clades in a food web system model. Ecol Res 18:625–637CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Åke Brännström
    • 1
    • 2
  • Nicolas Loeuille
    • 3
  • Michel Loreau
    • 4
  • Ulf Dieckmann
    • 2
    • 5
  1. 1.Department of Mathematics and Mathematical StatisticsUmeå UniversityUmeåSweden
  2. 2.International Institute for Applied Systems Analysis (IIASA)Evolution and Ecology ProgramLaxenburgAustria
  3. 3.Laboratoire Ecologie & EvolutionUniversité Pierre et Marie CurieParis Cedex 05France
  4. 4.Department of BiologyMcGill UniversityMontrealCanada
  5. 5.Section Theoretical BiologyInstitute of Biology Leiden UniversityLeidenThe Netherlands

Personalised recommendations