Theoretical Ecology

, Volume 1, Issue 4, pp 209–220 | Cite as

Interactions between climate change, competition, dispersal, and disturbances in a tree migration model

Original paper


Potentially significant shifts in the geographical patterns of vegetation are an expected result of climate change. However, the importance of local processes (e.g., dispersal, competition, or disturbance) has been often ignored in climate change modeling. We develop an individual-based simulation approach to assess how these mechanisms affect migration rate. We simulate the northward progression of a theoretical tree species when climate change makes northern habitat suitable. We test how the rate of progression is affected by (1) competition with a resident species, (2) interactions with disturbance regimes, (3) species dispersal kernel, and (4) the intensity of climate change over time. Results reveal a strong response of species’ expansion rate to the presence of a local competitor, as well as nonlinear effects of disturbance. We discuss these results in light of current knowledge of northern forest dynamics and results found in the climatic research literature.


Forest dynamics Simulation model Disturbance regime Species range Boreal forest Tree colonization 



We gratefully acknowledge funding from the Natural Sciences and Engineering Research Council of Canada (M.A. and C.B.), Canadian Foundation for Innovation, Ontario Ministry for Research and Innovation, Inter-American Institute for Global Change Research, the Canada Research Chairs program (M.A.) and two anonymous reviewers for their comments on the manuscript.


  1. Asselin H, Payette S, Fortin MJ, Vallee S (2003) The northern limit of Pinus banksiana Lamb. in Canada: explaining the difference between the eastern and western distributions. J Biogeogr 30:1709–1718 doi: 10.1046/j.1365-2699.2003.00935.x CrossRefGoogle Scholar
  2. Bolker BM, Pacala SW (1999) Spatial moment equations for plant competition: understanding spatial strategies and the advantages of short dispersal. Am Nat 153:575–602 doi: 10.1086/303199 CrossRefGoogle Scholar
  3. Botkin DB, Janak JF, Wallis JR (1972) Some ecological consequences of a computer model of forest growth. J Ecol 60:849–872 doi: 10.2307/2258570 CrossRefGoogle Scholar
  4. Bousquet F, Bakam I, Proton H, Le Page C (1998) Cormas: common-pool resources and multi-agent systems. Lect Notes Artif Intell 1416:826–838Google Scholar
  5. Breckling B, Middelhoff U, Reuter H (2006) Individual-based models as tools for ecological theory and application: understanding the emergence of organisational properties in ecological systems. Ecol Modell 194:102–113 doi: 10.1016/j.ecolmodel.2005.10.005 CrossRefGoogle Scholar
  6. Brooker RW, Travis JMJ, Clark EJ, Dytham C (2007) Modelling species’ range shifts in a changing climate: the impacts of biotic interactions, dispersal distance and the rate of climate change. J Theor Biol 245:59–65 doi: 10.1016/j.jtbi.2006.09.033 PubMedCrossRefGoogle Scholar
  7. Brooker RW, Maestre FT, Callaway RM, Lortie CL, Cavieres LA, Kunstler G et al (2008) Facilitation in plant communities: the past, the present, and the future. J Ecol 96:18–34 doi: 10.1111/j.1365-2745.2008.01373.x CrossRefGoogle Scholar
  8. Buckley YM, Brockerhoff E, Langer L, Ledgard N, North H, Rees M (2005) Slowing down a pine invasion despite uncertainty in demography and dispersal. J Appl Ecol 42:1020–1030 doi: 10.1111/j.1365-2664.2005.01100.x CrossRefGoogle Scholar
  9. Canham CD, Uriarte M (2006) Analysis of neighborhood dynamics of forest ecosystems using likelihood methods and modelling. Ecol Appl 16:62–73 doi: 10.1890/04-0657 PubMedCrossRefGoogle Scholar
  10. Canham CD, Papaik MJ, Latty EF (2001) Interspecific variation in susceptibility to windthrow as a function of tree size and storm severity for northern temperate tree species. Can J For Res-Rev Can Rech For 31:1–10 doi: 10.1139/cjfr-31-1-1 CrossRefGoogle Scholar
  11. Caplat P, Lepart J, Marty P (2006) Landscape patterns and agriculture: modelling the long-term effects of human practices on Pinus sylvestris spatial dynamics (Causse Mejean, France). Landscape Ecol 21:657–670 doi: 10.1007/s10980-005-4430-1 CrossRefGoogle Scholar
  12. Caplat P, Anand M, Bauch C (2008) Symmetric competition causes population oscillations in an individual-based model of forest dynamics. Ecol Modell 211:491–500 doi: 10.1016/j.ecolmodel.2007.10.002 CrossRefGoogle Scholar
  13. Chapin FS, Walker BH, Hobbs RJ, Hooper DU, Lawton JH, Sala OE et al (1997) Biotic control over the functioning of ecosystems. Science 277:500–504 doi: 10.1126/science.277.5325.500 CrossRefGoogle Scholar
  14. Chapin FS, Callaghan TV, Bergeron Y, Fukuda M, Johnstone JF, Juday G et al (2004) Global change and the boreal forest: thresholds, shifting states or gradual change? Ambio 33:361–365 doi: 10.1639/0044-7447(2004)033[0361:GCATBF]2.0.CO;2 PubMedCrossRefGoogle Scholar
  15. Clark JS, Fastie C, Hurtt G, Jackson ST, Johnson C, King GA et al (1998) Reid’s paradox of rapid plant migration—dispersal theory and interpretation of paleoecological records. Bioscience 48:13–24 doi: 10.2307/1313224 CrossRefGoogle Scholar
  16. Davis MA, Grime JP, Thompson K (2000) Fluctuating resources in plant communities: a general theory of invasibility. J Ecol 88:528–534 doi: 10.1046/j.1365-2745.2000.00473.x CrossRefGoogle Scholar
  17. DeAngelis DL, Mooij WM (2005) Individual-based modeling of ecological and evolutionary processes. Annu Rev Ecol Evol Syst 36:147–168 doi: 10.1146/annurev.ecolsys.36.102003.152644 CrossRefGoogle Scholar
  18. Debain S, Chadoeuf J, Curt T, Kunstler G, Lepart J (2007) Comparing effective dispersal in expanding population of Pinus sylvestris and Pinus nigra in calcareous grasslands. Can J Res 37:705–718 doi: 10.1139/X06-265 CrossRefGoogle Scholar
  19. Elie J-G, Ruel J-C (2005) Windthrow hazard modelling in boreal forests of black spruce and jack pine. Can J Res 35:2655–2663 doi: 10.1139/x05-189 CrossRefGoogle Scholar
  20. Emanuel WR, Shugart HH, Stevenson M (1985) Climatic-change and the broad-scale distribution of terrestrial ecosystem complexes—response. Clim Change 7:457–460 doi: 10.1007/BF00139060 CrossRefGoogle Scholar
  21. Gamache I, Payette S (2005) Latitudinal response of subarctic tree lines to recent climate change in eastern Canada. J Biogeogr 32:849–862 doi: 10.1111/j.1365-2699.2004.01182.x CrossRefGoogle Scholar
  22. Greene DF, Canham CD, Coates KD, LePage PT (2004) An evaluation of alternative dispersal functions for trees (p. 758). J Ecol 92:1124–1124 doi: 10.1111/j.0022-0477.2004.00921.x CrossRefGoogle Scholar
  23. Greene DF, Johnson EA (1996) Wind dispersal of seeds from a forest into a clearing. Ecology 77:595–609 doi: 10.2307/2265633 CrossRefGoogle Scholar
  24. Grimm V (1999) Ten years of individual-based modelling in ecology: what have we learned and what could we learn in the future? Ecol Modell 115:129–148 doi: 10.1016/S0304-3800(98)00188-4 CrossRefGoogle Scholar
  25. Guisan A, Thuiller W (2005) Predicting species distribution: offering more than simple habitat models. Ecol Lett 8:993–1009 doi: 10.1111/j.1461-0248.2005.00792.x CrossRefGoogle Scholar
  26. Guisan A, Zimmermann NE, Elith J, Graham CH, Phillips S, Peterson AT (2007) What matters for predicting the occurrences of trees: techniques, data, or species’ characteristics? Ecol Monogr 77:615–630 doi: 10.1890/06-1060.1 CrossRefGoogle Scholar
  27. Gustafson EJ, Gardner RH (1996) The effect of landscape heterogeneity on the probability of patch colonization. Ecology 77:94–107 doi: 10.2307/2265659 CrossRefGoogle Scholar
  28. He HS, Mladenoff DJ (1999) Spatially explicit and stochastic simulation of forest-landscape fire disturbance and succession. Ecology 80:81–99CrossRefGoogle Scholar
  29. Heikkinen RK, Luoto M, Araujo MB, Virkkala R, Thuiller W, Sykes MT (2006) Methods and uncertainties in bioclimatic envelope modelling under climate change. Prog Phys Geogr 30:751–777 doi: 10.1177/0309133306071957 CrossRefGoogle Scholar
  30. Higgins SI, Richardson DM (1998) Pine invasions in the southern hemisphere: modelling interactions between organism, environment and disturbance. Plant Ecol 135:79–93 doi: 10.1023/A:1009760512895 CrossRefGoogle Scholar
  31. Higgins SI, Richardson DM (1999) Predicting plant migration rates in a changing world: the role of long-distance dispersal. Am Nat 153:464–475 doi: 10.1086/303193 CrossRefGoogle Scholar
  32. Higgins SI, Cain ML (2002) Spatially realistic plant metapopulation models and the colonization–competition trade-off. J Ecol 90:616–626 doi: 10.1046/j.1365-2745.2002.00694.x CrossRefGoogle Scholar
  33. Ibánez I, Clark JS, LaDeau S, Lambert JHR (2007) Exploiting temporal variability to understand recruitment response to climate change. Ecol Monogr 77:163–177 doi: 10.1890/06-1097 CrossRefGoogle Scholar
  34. Jasinski JPP, Payette S (2005) The creation of alternative stable states in the southern boreal forest, Quebec, Canada. Ecol Monogr 75:561–583 doi: 10.1890/04-1621 CrossRefGoogle Scholar
  35. Katul GG, Porporato A, Nathan R, Siqueira M, Soons MB, Poggi D et al (2005) Mechanistic analytical models for long-distance seed dispersal by wind. Am Nat 166:368–381 doi: 10.1086/432589 PubMedCrossRefGoogle Scholar
  36. Keane RE, Austin M, Field C, Huth A, Lexer MJ, Peters D et al (2001) Tree mortality in gap models: application to climate change. Clim Change 51:509–540 doi: 10.1023/A:1012539409854 CrossRefGoogle Scholar
  37. Kirilenko AP, Solomon AM (1998) Modeling dynamic vegetation response to rapid climate change using bioclimatic classification. Clim Change 38:15–49 doi: 10.1023/A:1005379630126 CrossRefGoogle Scholar
  38. Kittel TGF, Steffen WL, Chapin FS III (2000) Global and regional modelling of Arctic-boreal vegetation distribution and its sensitivity to altered forcing. Glob Change Biol 6:1–18 doi: 10.1046/j.1365-2486.2000.06011.x CrossRefGoogle Scholar
  39. Kumagai T, Katul GG, Porporato A, Saitoh TM, Ohashi M, Ichie T et al (2004) Carbon and water cycling in a Bornean tropical rainforest under current and future climate scenarios. Adv Water Resour 27:1135–1150 doi: 10.1016/j.advwatres.2004.10.002 CrossRefGoogle Scholar
  40. Lee CT, Hastings A (2006) Non-equilibrium genetic structure is insensitive to the shape of the dispersal distribution. Evol Ecol Res 8:279–293Google Scholar
  41. Loehle C (1998) Height growth rate tradeoffs determine northern and southern range limits for trees. J Biogeogr 25:735–742 doi: 10.1046/j.1365-2699.1998.2540735.x CrossRefGoogle Scholar
  42. Loehle C (2000) Strategy space and the disturbance spectrum: a life-history model for tree species coexistence. Am Nat 156:14–33 doi: 10.1086/303369 PubMedCrossRefGoogle Scholar
  43. Loehle C, LeBlanc D (1996) Model-based assessments of climate change effects on forests: a critical review. Ecol Modell 90:1–31 doi: 10.1016/0304-3800(96)83709-4 CrossRefGoogle Scholar
  44. MacDougall AS, Wilson SD, Bakker JD (2008) Climatic variability alters the outcome of long-term community assembly. J Ecol 96:346–354 doi: 10.1111/j.1365-2745.2007.01333.x CrossRefGoogle Scholar
  45. Malanson GP, Cairns DM (1997) Effects of dispersal, population delays, and forest fragmentation on tree migration rates. Plant Ecol 131:67–79 doi: 10.1023/A:1009770924942 CrossRefGoogle Scholar
  46. Malcolm JR, Markham A, Neilson RP, Garaci M (2002) Estimated migration rates under scenarios of global climate change. J Biogeogr 29:835–849 doi: 10.1046/j.1365-2699.2002.00702.x CrossRefGoogle Scholar
  47. Masek JG (2001) Stability of boreal forest stands during recent climate change: evidence from Landsat satellite imagery. J Biogeogr 28:967–976 doi: 10.1046/j.1365-2699.2001.00612.x CrossRefGoogle Scholar
  48. Melbourne BA, Cornell HV, Davies KF, Dugaw CJ, Elmendorf S, Freestone AL et al (2007) Invasion in a heterogeneous world: resistance, coexistence or hostile takeover? Ecol Lett 10:77–94 doi: 10.1111/j.1461-0248.2006.00987.x PubMedCrossRefGoogle Scholar
  49. Moravie MA, Robert A (2003) A model to assess relationships between forest dynamics and spatial structure. J Veg Sci 14:823–834 doi: 10.1658/1100-9233(2003)014[0823:AMTARB]2.0.CO;2 CrossRefGoogle Scholar
  50. Morin X, Augspurger C, Chuine I (2007) Process-based modeling of tree species’ distributions. What limits temperate tree species’ range boundaries? Ecology 88:2280–2291 doi: 10.1890/06-1591.1 PubMedCrossRefGoogle Scholar
  51. Overpeck JT, Rind D, Goldberg R (1990) Climate-induced changes in forest disturbance and vegetation. Nature 343:51–53 doi: 10.1038/343051a0 CrossRefGoogle Scholar
  52. Pacala SW, Weiner J (1991) Effects of competitive asymmetry on a local density model of plant interference. J Theor Biol 149:165–179 doi: 10.1016/S0022-5193(05)80275-9 PubMedCrossRefGoogle Scholar
  53. Pacala SW, Hurtt GC (1993) Terrestrial vegetation and climate change integrating models and experiments. In: Kareiva PM, Kingsolver J, Huey R (eds) Biotic interactions and global change. Sinauer, Sunderland, pp 57–74Google Scholar
  54. Pacala SW, Canham CD, Saponara J, Silander JA, Kobe RK, Ribbens E (1996) Forest models defined by field measurements: estimation, error analysis and dynamics. Ecol Monogr 66:1–43 doi: 10.2307/2963479 CrossRefGoogle Scholar
  55. Pagnutti C, Azzouz M, Anand M (2007) Propagation of local interactions create global gap structure and dynamics in a tropical rainforest. J Theor Biol 247:168–181 doi: 10.1016/j.jtbi.2007.02.012 PubMedCrossRefGoogle Scholar
  56. Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Annu Rev Ecol Evol Syst 37:637–669 doi: 10.1146/annurev.ecolsys.37.091305.110100 CrossRefGoogle Scholar
  57. Payette S (2007) Contrasted dynamics of northern Labrador tree lines caused by climate change and migrational lag. Ecology 88:770–780 doi: 10.1890/06-0265 PubMedCrossRefGoogle Scholar
  58. Payette S, Fortin MJ, Gamache I (2001) The subarctic forest-tundra: the structure of a biome in a changing climate. Bioscience 51:709–718 doi: 10.1641/0006-3568(2001)051[0709:TSFTTS]2.0.CO;2 CrossRefGoogle Scholar
  59. Pereg D, Payette S (1998) Development of black spruce growth forms at tree line. Plant Ecol 138:137–147 doi: 10.1023/A:1009756707596 CrossRefGoogle Scholar
  60. Peterson CJ, Squiers ER (1995) Competition and succession in an aspen white-pine forest. J Ecol 83:449–457 doi: 10.2307/2261598 CrossRefGoogle Scholar
  61. Pham AT, De Grandpreì L, Gauthier S, Bergeron Y (2004) Gap dynamics and replacement patterns in gaps of the northeastern boreal forest of Quebec. Can J Res 34:353–364 doi: 10.1139/x03-265 CrossRefGoogle Scholar
  62. Prentice IC, Cramer W, Harrison SP, Leemans R, Monserud RA, Solomon AM (1992) A global biome model based on plant physiology and dominance, soil properties and climate. J Biogeogr 19:117–134 doi: 10.2307/2845499 CrossRefGoogle Scholar
  63. Rich RL, Frelich LE, Reich PB (2007) Wind-throw mortality in the southern boreal forest: effects of species, diameter and stand age. J Ecol 95:1261–1273 doi: 10.1111/j.1365-2745.2007.01301.x CrossRefGoogle Scholar
  64. Schenk HJ (2006) Root competition: beyond resource depletion. J Ecol 94:725–739 doi: 10.1111/j.1365-2745.2006.01124.x CrossRefGoogle Scholar
  65. Soja AJ, Tchebakova NM, French NHF, Flannigan MD, Shugart HH, Stocks BJ, Sukhinin AI, Varfenova EI, Chapin FS, Stackhouse PW (2007) Climate-induced boreal forest change: predictions versus current observations. Global Planet Change 56:274–296 doi: 10.1016/j.gloplacha.2006.07.028 CrossRefGoogle Scholar
  66. Solomon AM, Kirilenko AP (1997) Climate change and terrestrial biomass: what if trees do not migrate? Glob Ecol Biogeography Lett 6:139–148 doi: 10.2307/2997570 CrossRefGoogle Scholar
  67. Takenaka A (2005) Local coexistence of tree species and the dynamics of global distribution pattern along an environmental gradient: a simulation study. Ecol Res 20:297–304 doi: 10.1007/s11284-005-0045-x CrossRefGoogle Scholar
  68. Thompson S, Katul G (2008) Plant propagation fronts and wind dispersal: an analytical model to upscale from seconds to decades using superstatistics. Am Nat 171:468–479 doi: 10.1086/528966 CrossRefPubMedGoogle Scholar
  69. Timoney K (1995) Tree and tundra cover anomalies in the subarctic forest-tundra of Northwestern Canada. Arctic 48:13–21Google Scholar
  70. Turner MG (2005) Landscape ecology in North America: past, present, and future. Ecology 86:1967–1974 doi: 10.1890/04-0890 CrossRefGoogle Scholar
  71. Zeide B (2004) Intrinsic units in growth modelling. Ecol Modell 175:249–259 doi: 10.1016/j.ecolmodel.2003.10.017 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Department of Environmental BiologyUniversity of GuelphGuelphCanada
  2. 2.Department of Mathematics and StatisticsUniversity of GuelphGuelphCanada

Personalised recommendations