Skip to main content
Log in

Proportions of different habitat types are critical to the fate of a resistance allele

  • Original Paper
  • Published:
Theoretical Ecology Aims and scope Submit manuscript

Abstract

We describe a simple deterministic theoretical framework for analysing the gene frequency evolution of two alternative alleles at a single genetic locus in a habitat comprising two environments in which the genotypes have different relative fitnesses. We illustrate this for adaptation of pest insects, where one allele (resistance to toxins expressed in transgenic crops) is favoured in one environment (transgenic plants) and the other allele (susceptibility to toxins) is favoured in the other environment (‘refuges’ of non-transgenic plants). The evolution of allele frequencies depends on selection pressure because of relative sizes of the environments and relative fitnesses of the genotypes in each environment. We demonstrate that there are critical threshold proportions for habitat division that determine equilibrium allele frequencies. The stability of the system depends on relationships between the relative genotype fitnesses. In some cases, the division of the habitat in exactly the threshold proportions removes selection pressure and maintains polymorphism at all allele frequencies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alstad DN, Andow DA (1995) Managing the evolution of insect resistance to transgenic plants. Science 268:1894–1896

    Article  PubMed  CAS  Google Scholar 

  • Alves AP, Spencer TA, Tabashnik BE, Siegfried BD (2006) Inheritance of resistance to the Cry1Ab Bacillus thuringiensis toxin in Ostrinia nubilalis (Lepidoptera: Crambidae). J Econ Entomol 99:494–501

    PubMed  CAS  Google Scholar 

  • Anderson RM, May RM (1991) Infectious diseases of humans: dynamics and control. University Press, Oxford

    Google Scholar 

  • Andersson DI, Levin BR (1999) The biological cost of antibiotic resistance. Curr Opin Microbiol 2:489–493

    Article  PubMed  CAS  Google Scholar 

  • Bates SL, Zhao JZ, Shelton AM, Roush RT (2005) Insect resistance management in GM crops: past, present and future. Nat Biotechnol 23:57–62

    Article  PubMed  CAS  Google Scholar 

  • Bird LJ, Akhurst RJ (2007) Effects of host plant species on fitness costs of Bt resistance in Helicoverpa armigera (Lepidoptera: Noctuidae). Biol Control 40:196–203

    Article  Google Scholar 

  • Bourguet D, Genissel A, Raymond M (2000) Insecticide resistance and dominance levels. J Econ Entomol 93:1588–1595

    PubMed  CAS  Google Scholar 

  • Bourguet D, Desquilbet M, Lemarie S (2005) Regulating insect resistance management: the case of non-Bt corn refuges in the US. J Environ Manage 76:210–220

    Article  PubMed  Google Scholar 

  • Brookes G, Barfoot P (2006) GM crops: the first ten years – global socio-economic and environmental impacts. ISAAA Brief no. 36. International Service for the Acquisition of Agri-biotech Applications, Ithaca, NY

    Google Scholar 

  • Byers DL (2005) Evolution in heterogeneous environments and the potential of maintenance of genetic variation in traits of adaptive significance. Genetica 123:107–124

    Article  PubMed  Google Scholar 

  • Carrière Y, Tabashnik B (2001) Reversing insect adaptation to transgenic insecticidal plants. Proc R Soc Lond B Biol Sci 268:1475–1480

    Article  Google Scholar 

  • Carrière Y, Ellers-Kirk C, Liu YB, Sims MA, Patin AL, Dennehy TJ, Tabashnik BE (2001a) Fitness costs and maternal effects associated with resistance to transgenic cotton in the pink bollworm (Lepidoptera: Gelechiidae). J Econ Entomol 94:1571–1576

    PubMed  Google Scholar 

  • Carrière Y, Ellers-Kirk C, Patin AL, Sims MA, Meyer S, Liu YB, Dennehy TJ, Tabashnik BE (2001b) Overwintering cost associated with resistance to transgenic cotton in the pink bollworm (Lepidoptera: Gelechiidae). J Econ Entomol 94:935–941

    PubMed  Google Scholar 

  • Carrière Y, Ellers-Kirk C, Biggs R, Degain B, Holley D, Yafuso C, Evans P, Dennehy TJ, Tabashnik BE (2005a) Effects of cotton cultivar on fitness costs associated with resistance of pink bollworm (Lepidoptera: Gelechiidae) to Bt cotton. J Econ Entomol 98:947–954

    PubMed  Google Scholar 

  • Carrière Y, Ellers-Kirk C, Kumar K, Heuberger S, Whitlow M, Antilla L, Dennehy TJ, Tabashnik BE (2005b) Long-term evaluation of compliance with refuge requirements for Bt cotton. Pest Manage Sci 61:327–330

    Article  CAS  Google Scholar 

  • Coleman PG, Welburn SC (2004) Are fitness costs associated with resistance to human serum in Trypanosoma brucei rhodesiense? Trends Parasitol 20:311–315

    Article  PubMed  Google Scholar 

  • Crowder DW, Carrière Y, Tabashnik BE, Ellsworth PC, Dennehy TJ (2006) Modeling evolution of resistance to pyriproxyfen by the sweetpotato whitefly (Homoptera: Aleyrodidae). J Econ Entomol 99:1396–1406

    PubMed  CAS  Google Scholar 

  • Dempster ER (1955) Maintenance of genetic heterogeneity. In: Proceedings of the Cold Spring Harbor Symposia on Quantitative Biology: population genetics – the nature and causes of genetic variability in populations, vol 20, pp 25–32

  • Ferré J, Van Rie J (2002) Biochemistry and genetics of insect resistance to Bacillus thuringiensis. Annu Rev Entomol 47:501–533

    Article  PubMed  Google Scholar 

  • ffrench-Constant RH, Daborn PJ, Le Goff G (2004) The genetics and genomics of insecticide resistance. Trends Genet 20:163–170

    Article  PubMed  CAS  Google Scholar 

  • Gahan LJ, Gould F, Heckel DG (2001) Identification of a gene associated with Bt resistance in Heliothis virescens. Science 293:857–860

    Article  PubMed  CAS  Google Scholar 

  • Gahan LJ, Ma YT, Coble MLM, Gould F, Moar WJ, Heckel DG (2005) Genetic basis of resistance to Cry1Ac and Cry2Aa in Heliothis virescens (Lepidoptera: Noctuidae). J Econ Entomol 98:1357–1368

    PubMed  CAS  Google Scholar 

  • Gillespie JH (1998) Population genetics: a concise guide. The Johns Hopkins University Press, Baltimore

    Google Scholar 

  • Gould F (1998) Sustainability of transgenic insecticidal cultivars: integrating genetics and ecology. Annu Rev Entomol 43:701–726

    Article  PubMed  CAS  Google Scholar 

  • Gould F, Anderson A, Jones A, Sumerford D, Heckel DG, Lopez J, Micinski S, Leonard R, Laster M (1997) Initial frequency of alleles for resistance to Bacillus thuringiensis toxins in field populations of Heliothis virescens. Proc Natl Acad Sci USA 94:3519–3523

    Article  PubMed  CAS  Google Scholar 

  • Gressel J (2005) Problems in qualifying and quantifying assumptions in plant protection models: Resultant simulations can be mistaken by a factor of million. Crop Prot 24:1007–1015

    Article  Google Scholar 

  • Gujar GT, Kalia V, Kumari A, Singh BP, Mittal A, Nair R, Mohan M (2007a) Helicoverpa armigera baseline susceptibility to Bacillus thuringiensis Cry toxins and resistance management for Bt cotton in India. J Invertebrate Pathol 95:214–219

    Article  CAS  Google Scholar 

  • Gujar GT, Khawale RN, Kalia V (2007b) Genetic variability of Helicoverpa armigera (Hübner) attributable to cadherin gene-specific molecular markers. Curr Sci 92:800–804

    CAS  Google Scholar 

  • Hartl DL, Clark AG (1989) Principles of population genetics. Sinauer, Sunderland, MA

    Google Scholar 

  • Hastings IM, D’Alessandro U (2000) Modelling a predictable disaster: the rise and spread of drug-resistant malaria. Parasitol Today 16:340–347

    Article  PubMed  CAS  Google Scholar 

  • Hedrick PW (2006) Genetic polymorphism in heterogeneous environments: the age of genomics. Annu Rev Ecol Evol Syst 37:67–93

    Article  Google Scholar 

  • Higginson DM, Morin S, Nyboer ME, Biggs RW, Tabashnik BE, Carrière Y (2005) Evolutionary trade-offs of insect resistance to Bacillus thuringiensis crops: fitness cost affecting paternity. Evol 59:915–920

    Google Scholar 

  • Huang J, Hu R, Pray C, Qiao F, Rozelle S (2003) Biotechnology as an alternative to chemical pesticides: a case study of Bt cotton in China. Agric Econ 29:55–67

    Article  Google Scholar 

  • Huang F, Leonard BR, Andow DA (2007) Sugarcane borer (Lepidoptera: Crambidae) resistance to transgenic Bacillus thuringiensis maize. J Econ Entomol 100:164–171

    Article  PubMed  Google Scholar 

  • Jackson RE, Gould F, Bradley JR Jr, Van Duyn JW (2006) Genetic variation for resistance to Bacillus thuringiensis toxins in Helicoverpa zea (Lepidoptera: Noctuidae) in eastern North Carolina. J Econ Entomol 99:1790–1797

    PubMed  CAS  Google Scholar 

  • James C (2006) Global status of commercialized biotech/GM Crops. 2006 ISAAA Briefs no. 35. International Service for the Acquisition of Agri-biotech Applications, Ithaca, NY

    Google Scholar 

  • Karlin S (1977) Protection of recessive and dominant traits in a subdivided population with general migration structure. Am Nat 111:1145–1162

    Article  Google Scholar 

  • Kirkpatrick M, Ravigné V (2002) Speciation by natural and sexual selection: models and experiments. Am Nat 159:S22–S35

    Article  PubMed  Google Scholar 

  • Lenormand T, Raymond M (1998) Resistance management: the stable zone strategy. Proc R Soc Lond B Biol Sci 265:1985–1990

    Article  Google Scholar 

  • Levene H (1953) Genetic equilibrium when more than one ecological niche is available. Am Nat 87:331–333

    Article  Google Scholar 

  • Levin BR (2001) Minimizing potential resistance: a population dynamics view. Clin Infect Dis 33:S161–S169

    Article  PubMed  CAS  Google Scholar 

  • Li G, Wu K, Gould F, Feng H, He Y, Guo Y (2004) Frequency of Bt resistance genes in Helicoverpa armigera populations from the Yellow River cotton-farming region of China. Entomol Exp Appl 112:135–143

    Article  Google Scholar 

  • Liu YB, Tabashnik BE, Dennehy TJ, Patin AL, Sims MA, Meyer SK, Carrière Y (2001) Effects of Bt cotton and Cry1Ac toxin on survival and development of pink bollworm (Lepidoptera: Gelechiidae). J Econ Entomol 94:1237–1242

    PubMed  CAS  Google Scholar 

  • Mahon RJ, Olsen KM, Garsia KA, Young SR (2007) Resistance to Bacillus thuringiensis toxin Cry2Ab in a strain of Helicoverpa armigera (Lepidoptera: Noctuidae) in Australia. J Econ Entomol 100:894–902

    Article  PubMed  CAS  Google Scholar 

  • Mohammed-Awel J, Kopecky K, Ringland J (2007) A situation in which a local nontoxic refuge promotes pest resistance to toxic crops. Theor Popul Biol 71:131–146

    Article  PubMed  Google Scholar 

  • Morin S, Biggs RW, Sisterson MS, Shriver L, Ellers-Kirk C, Higginson D, Holley D, Gahan LJ, Heckel DG, Carrière Y, Dennehy TJ, Brown JK, Tabashnik BE (2003) Three cadherin alleles associated with resistance to Bacillus thuringiensis in pink bollworm. Proc Natl Acad Sci USA 100:5004–5009

    Article  PubMed  CAS  Google Scholar 

  • Nagylaki T, Lou Y (2001) Patterns of multiallelic polymorphism maintained by migration and selection. Theor Popul Biol 59:297–313

    Article  PubMed  CAS  Google Scholar 

  • Nagylaki T, Lou Y (2006) Evolution under the multiallelic Levene model. Theor Popul Biol 70:401–411

    Article  PubMed  Google Scholar 

  • Nicholson GM (2007) Fighting the global pest problem: preface to the special Toxicon issue on insecticidal toxins and their potential for insect pest control. Toxicon 49:413–422

    Article  PubMed  CAS  Google Scholar 

  • Pigott CR, Ellar DJ (2007) Role of receptors in Bacillus thuringiensis crystal toxin activity. Microbiol Mol Biol Rev 71:255–281

    Article  PubMed  CAS  Google Scholar 

  • Ramachandran S, Buntin GD, All JN, Tabashnik BE, Raymer PL, Adang MJ, Pulliam DA, Stewart CN Jr (1998) Survival, development, and oviposition of resistant diamondback moth (Lepidoptera: Plutellidae) on transgenic canola producing a Bacillus thuringiensis toxin. J Econ Entomol 91:1239–1244

    Google Scholar 

  • Raymond B, Sayyed AH, Hails RS, Wright DJ (2007) Exploiting pathogens and their impact on fitness costs to manage the evolution of resistance to Bacillus thuringiensis. J Appl Ecol 44:768–780

    Article  Google Scholar 

  • Shelton AM, Zhao JZ, Roush RT (2002) Economic, ecological, food safety, and social consequences of the deployment of Bt transgenic plants. Annu Rev Entomol 47:845–881

    Article  PubMed  CAS  Google Scholar 

  • Stodola TJ, Andow DA, Hyden AR, Hinton JL, Roark JJ, Buschman LL, Porter P, Cronholm GB (2006) Frequency of resistance to Bacillus thuringiensis toxin Cry1Ab in southern United States corn belt population of European corn borer (Lepidoptera: Crambidae). J Econ Entomol 99:502–507

    Article  PubMed  CAS  Google Scholar 

  • Tabashnik BE (1990) Modelling and evaluation of resistance management tactics. In: Roush RT, Tabashnik BE (eds) Pesticide resistance in arthropods. Chapman & Hall, New York, pp 153–182

    Google Scholar 

  • Tabashnik BE, Liu YB, Finson N, Masson L, Heckel DG (1997a) One gene in diamondback moth confers resistance to four Bacillus thuringiensis toxins. Proc Natl Acad Sci USA 94:1640–1644

    Article  PubMed  CAS  Google Scholar 

  • Tabashnik BE, Liu YB, Malvar T, Heckel DG, Masson L, Ballester V, Granero F, Ménsua JL, Ferré J (1997b) Global variation in the genetic and biochemical basis of diamondback moth resistance to Bacillus thuringiensis. Proc Natl Acad Sci USA 94:12780–12785

    Article  PubMed  CAS  Google Scholar 

  • Tabashnik BE, Patin AL, Dennehy TJ, Liu YB, Carrière Y, Sims MA, Antilla L (2000) Frequency of resistance to Bacillus thuringiensis in field populations of pink bollworm. Proc Natl Acad Sci USA 97:12980–12984

    Article  PubMed  CAS  Google Scholar 

  • Tabashnik BE, Gould F, Carrière Y (2004) Delaying evolution of insect resistance to transgenic crops by dominance and heritability. J Evol Biol 17:904–912

    Article  PubMed  CAS  Google Scholar 

  • Tabashnik BE, Dennehy TJ, Carrière Y (2005) Delayed resistance to transgenic cotton in pink bollworm. Proc Natl Acad Sci USA 102:15389–15393

    Article  PubMed  CAS  Google Scholar 

  • Tang JD, Collins HL, Roush RT, Metz TD, Earle ED, Shelton AM (1999) Survival, weight gain, and oviposition of resistant and susceptible Plutella xylostella (Lepidoptera: Plutellidae) on broccoli expressing Cry1Ac toxin of Bacillus thuringiensis. J Econ Entomol 92:47–55

    CAS  Google Scholar 

  • Templeton AR (1981) Mechanisms of speciation – a population genetic approach. Annu Rev Ecol Syst 12:23–48

    Article  Google Scholar 

  • Vacher C, Bourguet D, Rousset F, Chevillon C, Hochberg ME (2003) Modelling the spatial configuration of refuges for a sustainable of pests: a case study of Bt cotton. J Evol Biol 16:378–387

    Article  PubMed  CAS  Google Scholar 

  • Wallace B (1968) Topics in population genetics. Norton, New York

    Google Scholar 

Download references

Acknowledgements

This work was supported by the UK Biotechnology and Biological Sciences Research Council (BBSRC). MBB is a Royal Society University Research Fellow. We thank Ben Raymond and Krisztián Mágori for helpful comments on the draft of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael B. Bonsall.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alphey, N., Coleman, P.G., Bonsall, M.B. et al. Proportions of different habitat types are critical to the fate of a resistance allele. Theor Ecol 1, 103–115 (2008). https://doi.org/10.1007/s12080-008-0010-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12080-008-0010-8

Keywords

Navigation