Skip to main content
Log in

Use and application of organ-on-a-chip platforms in cancer research

  • Review
  • Published:
Journal of Cell Communication and Signaling Aims and scope

Abstract

Tumors are a major cause of death worldwide, and much effort has been made to develop appropriate anti-tumor therapies. Existing in vitro and in vivo tumor models cannot reflect the critical features of cancer. The development of organ-on-a-chip models has enabled the integration of organoids, microfluidics, tissue engineering, biomaterials research, and microfabrication, offering conditions that mimic tumor physiology. Three-dimensional in vitro human tumor models that have been established as organ-on-a-chip models contain multiple cell types and a structure that is similar to the primary tumor. These models can be applied to various foci of oncology research. Moreover, the high-throughput features of microfluidic organ-on-a-chip models offer new opportunities for achieving large-scale drug screening and developing more personalized treatments. In this review of the literature, we explore the development of organ-on-a-chip technology and discuss its use as an innovative tool in basic and clinical applications and summarize its advancement of cancer research.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aleman J, Skardal A (2019) A multi-site metastasis-on-a-chip microphysiological system for assessing metastatic preference of cancer cells. Biotechnol Bioeng 116:936–944

    CAS  PubMed  Google Scholar 

  • Baker BM, Trappmann B, Stapleton SC, Toro E, Chen CS (2013) Microfluidics embedded within extracellular matrix to define vascular architectures and pattern diffusive gradients. Lab Chip 13:3246–3252

    CAS  PubMed  PubMed Central  Google Scholar 

  • Begley CG, Ellis LM (2012) Drug development: Raise standards for preclinical cancer research. Nature 483:531–533

    CAS  PubMed  Google Scholar 

  • Benam KH, Dauth S, Hassell B, Herland A, Jain A, Jang KJ, Karalis K, Kim HJ, MacQueen L, Mahmoodian R, Musah S, Torisawa YS, van der Meer AD, Villenave R, Yadid M, Parker KK, Ingber DE (2015) Engineered in vitro disease models. Annu Rev Pathol 10:195–262

    CAS  PubMed  Google Scholar 

  • Bersini S, Jeon JS, Dubini G, Arrigoni C, Chung S, Charest JL, Moretti M, Kamm RD (2014) A microfluidic 3D in vitro model for specificity of breast cancer metastasis to bone. Biomaterials 35:2454–2461

    CAS  PubMed  Google Scholar 

  • Boussommier-Calleja A, Li R, Chen MB, Wong SC, Kamm RD (2016) Microfluidics: a new tool for modeling cancer-immune interactions. Trends Cancer 2:6–19

    PubMed  PubMed Central  Google Scholar 

  • Bruun J, Kryeziu K, Eide PW, Moosavi SH, Eilertsen IA, Langerud J, Røsok B, Totland MZ, Brunsell TH, Pellinen T, Saarela J, Bergsland CH, Palmer HG, Brudvik KW, Guren T, Dienstmann R, Guren MG, Nesbakken A, Bjørnbeth BA, Sveen A, Lothe RA (2020) Patient-derived organoids from multiple colorectal cancer liver metastases reveal moderate intra-patient pharmacotranscriptomic heterogeneity. Clin Cancer Res 26:4107–4119

    CAS  PubMed  Google Scholar 

  • Burridge PW, Li YF, Matsa E, Wu H, Ong SG, Sharma A, Holmström A, Chang AC, Coronado MJ, Ebert AD, Knowles JW, Telli ML, Witteles RM, Blau HM, Bernstein D, Altman RB, Wu JC (2016) Human induced pluripotent stem cell-derived cardiomyocytes recapitulate the predilection of breast cancer patients to doxorubicin-induced cardiotoxicity. Nat Med 22:547–556

    CAS  PubMed  PubMed Central  Google Scholar 

  • Byrne AT, Alférez DG, Amant F, Annibali D, Arribas J, Biankin AV, Bruna A, Budinská E, Caldas C, Chang DK, Clarke RB, Clevers H, Coukos G, Dangles-Marie V, Eckhardt SG, Gonzalez-Suarez E, Hermans E, Hidalgo M, Jarzabek MA, de Jong S, Jonkers J, Kemper K, Lanfrancone L, Mælandsmo GM, Marangoni E, Marine J-C, Medico E, Norum JH, Palmer HG, Peeper DS, Pelicci PG, Piris-Gimenez A, Roman-Roman S, Rueda OM, Seoane J, Serra V, Soucek L, Vanhecke D, Villanueva A, Vinolo E, Bertotti A, Trusolino L (2017) Interrogating open issues in cancer precision medicine with patient-derived xenografts. Nat Rev Cancer 17:254–268

    CAS  PubMed  Google Scholar 

  • Chakrabarty S, Quiros-Solano WF, Kuijten MMP, Haspels B, Mallya S, Lo CSY, Othman A, Silvestri C, van de Stolpe A, Gaio N, Odijk H, van de Ven M, de Ridder CMA, van Weerden WM, Jonkers J, Dekker R, Taneja N, Kanaar R, van Gent DC (2022) A microfluidic cancer-on-chip platform predicts drug response using organotypic tumor slice culture. Cancer Res 82:510–520

    CAS  PubMed  Google Scholar 

  • Chen P, Zhang X, Ding R, Yang L, Lyu X, Zeng J, Lei JH, Wang L, Bi J, Shao N, Shu D, Wu B, Wu J, Yang Z, Wang H, Wang B, Xiong K, Lu Y, Fu S, Choi TK, Lon NW, Zhang A, Tang D, Quan Y, Meng Y, Miao K, Sun H, Zhao M, Bao J, Zhang L, Xu X, Shi Y, Lin Y, Deng C (2021) Patient-derived organoids can guide personalized-therapies for patients with advanced breast cancer. Adv Sci 8:e2101176

    Google Scholar 

  • Choi Y, Hyun E, Seo J, Blundell C, Kim HC, Lee E, Lee SH, Moon A, Moon WK, Huh D (2015) A microengineered pathophysiological model of early-stage breast cancer. Lab Chip 15:3350–3357

    CAS  PubMed  PubMed Central  Google Scholar 

  • Czerniecki SM, Cruz NM, Harder JL, Menon R, Annis J, Otto EA, Gulieva RE, Islas LV, Kim YK, Tran LM, Martins TJ, Pippin JW, Fu H, Kretzler M, Shankland SJ, Himmelfarb J, Moon RT, Paragas N, Freedman BS (2018) High-throughput screening enhances kidney organoid differentiation from human pluripotent stem cells and enables automated multidimensional phenotyping. Cell Stem Cell 22:929-940.e924

    CAS  PubMed  PubMed Central  Google Scholar 

  • Drost J, van Boxtel R, Blokzijl F, Mizutani T, Sasaki N, Sasselli V, de Ligt J, Behjati S, Grolleman JE, van Wezel T, Nik-Zainal S, Kuiper RP, Cuppen E, Clevers H (2017) Use of CRISPR-modified human stem cell organoids to study the origin of mutational signatures in cancer. Science 358:234–238

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dutta D, Heo I, Clevers H (2017) Disease modeling in stem cell-derived 3D organoid systems. Trends Mol Med 23:393–410

    CAS  PubMed  Google Scholar 

  • Ebrahimkhani MR, Young CL, Lauffenburger DA, Griffith LG, Borenstein JT (2014) Approaches to in vitro tissue regeneration with application for human disease modeling and drug development. Drug Discov Today 19:754–762

    CAS  PubMed  PubMed Central  Google Scholar 

  • Eduati F, Utharala R, Madhavan D, Neumann UP, Longerich T, Cramer T, Saez-Rodriguez J, Merten CA (2018) A microfluidics platform for combinatorial drug screening on cancer biopsies. Nat Commun 9:2434–2434

    PubMed  PubMed Central  Google Scholar 

  • Esch MB, Ueno H, Applegate DR, Shuler ML (2016) Modular, pumpless body-on-a-chip platform for the co-culture of GI tract epithelium and 3D primary liver tissue. Lab Chip 16:2719–2729

    CAS  PubMed  Google Scholar 

  • Ferreira MM, Ramani VC, Jeffrey SS (2016) Circulating tumor cell technologies. Mol Oncol 10:374–394

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fidler IJ, Kim S-J, Langley RR (2007) The role of the organ microenvironment in the biology and therapy of cancer metastasis. J Cell Biochem 101:927–936

    CAS  PubMed  Google Scholar 

  • Folch A, Toner M (1998) Cellular micropatterns on biocompatible materials. Biotechnol Prog 14:388–392

    CAS  PubMed  Google Scholar 

  • Gao D, Vela I, Sboner A, Iaquinta PJ, Karthaus WR, Gopalan A, Dowling C, Wanjala JN, Undvall EA, Arora VK, Wongvipat J, Kossai M, Ramazanoglu S, Barboza LP, Di W, Cao Z, Zhang QF, Sirota I, Ran L, MacDonald TY, Beltran H, Mosquera JM, Touijer KA, Scardino PT, Laudone VP, Curtis KR, Rathkopf DE, Morris MJ, Danila DC, Slovin SF, Solomon SB, Eastham JA, Chi P, Carver B, Rubin MA, Scher HI, Clevers H, Sawyers CL, Chen Y (2014) Organoid cultures derived from patients with advanced prostate cancer. Cell 159:176–187

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hachey SJ, Movsesyan S, Nguyen QH, Burton-Sojo G, Tankazyan A, Wu J, Hoang T, Zhao D, Wang S, Hatch MM, Celaya E, Gomez S, Chen GT, Davis RT, Nee K, Pervolarakis N, Lawson DA, Kessenbrock K, Lee AP, Lowengrub J, Waterman ML, Hughes CCW (2021) An in vitro vascularized micro-tumor model of human colorectal cancer recapitulates in vivo responses to standard-of-care therapy. Lab Chip 21:1333–1351

    CAS  PubMed  PubMed Central  Google Scholar 

  • Han Z, Peng X, Yang Y, Yi J, Zhao D, Bao Q, Long S, Yu SX, Xu XX, Liu B, Liu YJ, Shen Y, Qiao L (2022) Integrated microfluidic-SERS for exosome biomarker profiling and osteosarcoma diagnosis. Biosens Bioelectron 217:114709

    CAS  PubMed  Google Scholar 

  • Hassell BA, Goyal G, Lee E, Sontheimer-Phelps A, Levy O, Chen CS, Ingber DE (2017) Human organ chip models recapitulate orthotopic lung cancer growth, therapeutic responses, and tumor dormancy in vitro. Cell Rep 21:508–516

    CAS  PubMed  Google Scholar 

  • Hassell BA, Goyal G, Lee E, Sontheimer-Phelps A, Levy O, Chen CS, Ingber DE (2018) Human organ chip models recapitulate orthotopic lung cancer growth, therapeutic responses, and tumor dormancy in vitro. Cell Rep 23:3698

    PubMed  Google Scholar 

  • Herland A, Maoz BM, Das D, Somayaji MR, Prantil-Baun R, Novak R, Cronce M, Huffstater T, Jeanty SSF, Ingram M, Chalkiadaki A, Benson Chou D, Marquez S, Delahanty A, Jalili-Firoozinezhad S, Milton Y, Sontheimer-Phelps A, Swenor B, Levy O, Parker KK, Przekwas A, Ingber DE (2020) Quantitative prediction of human pharmacokinetic responses to drugs via fluidically coupled vascularized organ chips. Nat Biomed Eng 4:421–436

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hirt C, Papadimitropoulos A, Mele V, Muraro MG, Mengus C, Iezzi G, Terracciano L, Martin I, Spagnoli GC (2014) “In vitro” 3D models of tumor-immune system interaction. Adv Drug Deliv Rev 79–80:145–154

    PubMed  Google Scholar 

  • Huang CP, Lu J, Seon H, Lee AP, Flanagan LA, Kim HY, Putnam AJ, Jeon NL (2009) Engineering microscale cellular niches for three-dimensional multicellular co-cultures. Lab Chip 9:1740–1748

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huch M, Koo BK (2015) Modeling mouse and human development using organoid cultures. Development 142:3113–3125

    CAS  PubMed  Google Scholar 

  • Hughes R, Qian BZ, Rowan C, Muthana M, Keklikoglou I, Olson OC, Tazzyman S, Danson S, Addison C, Clemons M, Gonzalez-Angulo AM, Joyce JA, De Palma M, Pollard JW, Lewis CE (2015) Perivascular M2 macrophages stimulate tumor relapse after chemotherapy. Cancer Res 75:3479–3491

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huh D, Matthews BD, Mammoto A, Montoya-Zavala M, Hsin HY, Ingber DE (2010) Reconstituting organ-level lung functions on a chip. Science 328:1662–1668

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hum PW (2006) Exploration of large scale manufacturing of polydimethylsiloxane (pdms) microfluidic devices. In: Massachusetts Institute of Technology. Cambridge, MA, USA

  • Imparato G, Urciuolo F, Netti PA (2022) Organ on chip technology to model cancer growth and metastasis. Bioengineering 9(1):28

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ingber DE (2020) Is it time for reviewer 3 to request human organ chip experiments instead of animal validation studies? Adv Sci (weinh) 7:2002030

    CAS  PubMed  Google Scholar 

  • Irimia D, Ellett F (2016) Big insights from small volumes: deciphering complex leukocyte behaviors using microfluidics. J Leukoc Biol 100:291–304

    CAS  PubMed  PubMed Central  Google Scholar 

  • Irimia D, Wang X (2018) Inflammation-on-a-Chip: probing the immune system ex vivo. Trends Biotechnol 36:923–937

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ivich F (2019) Development of a microfluidic model of a human prostate gland for cancer research. The University of Arizon, Tucson, AZ, USA

    Google Scholar 

  • Jekunen A (2014) Decision-making in product portfolios of pharmaceutical research and development–managing streams of innovation in highly regulated markets. Drug Des Devel Ther 8:2009–2016

    PubMed  PubMed Central  Google Scholar 

  • Jenkins RW, Aref AR, Lizotte PH, Ivanova E, Stinson S, Zhou CW, Bowden M, Deng J, Liu H, Miao D, He MX, Walker W, Zhang G, Tian T, Cheng C, Wei Z, Palakurthi S, Bittinger M, Vitzthum H, Kim JW, Merlino A, Quinn M, Venkataramani C, Kaplan JA, Portell A, Gokhale PC, Phillips B, Smart A, Rotem A, Jones RE, Keogh L, Anguiano M, Stapleton L, Jia Z, Barzily-Rokni M, Cañadas I, Thai TC, Hammond MR, Vlahos R, Wang ES, Zhang H, Li S, Hanna GJ, Huang W, Hoang MP, Piris A, Eliane J-P, Stemmer-Rachamimov AO, Cameron L, Su M-J, Shah P, Izar B, Thakuria M, LeBoeuf NR, Rabinowits G, Gunda V, Parangi S, Cleary JM, Miller BC, Kitajima S, Thummalapalli R, Miao B, Barbie TU, Sivathanu V, Wong J, Richards WG, Bueno R, Yoon CH, Miret J, Herlyn M, Garraway LA, Van Allen EM, Freeman GJ, Kirschmeier PT, Lorch JH, Ott PA, Hodi FS, Flaherty KT, Kamm RD, Boland GM, Wong K-K, Dornan D, Paweletz CP, Barbie DA (2018) Ex vivo profiling of PD-1 blockade using organotypic tumor spheroids. Cancer Discov 8:196–215

    CAS  PubMed  Google Scholar 

  • Jeon JS, Bersini S, Gilardi M, Dubini G, Charest JL, Moretti M, Kamm RD (2015) Human 3D vascularized organotypic microfluidic assays to study breast cancer cell extravasation. Proc Natl Acad Sci U S A 112:214–219

    CAS  PubMed  Google Scholar 

  • Jeong SY, Lee JH, Shin Y, Chung S, Kuh HJ (2016) Co-culture of tumor spheroids and fibroblasts in a collagen matrix-incorporated microfluidic chip mimics reciprocal activation in solid tumor microenvironment. PLoS ONE 11:e0159013

    PubMed  PubMed Central  Google Scholar 

  • Jiang L, Ivich F, Tahsin S, Tran M, Frank SB, Miranti CK, Zohar Y (2019) Human stroma and epithelium co-culture in a microfluidic model of a human prostate gland. Biomicrofluidics 13:064116

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kalot R, Mhanna R, Talhouk R (2022) Organ-on-a-chip platforms as novel advancements for studying heterogeneity, metastasis, and drug efficacy in breast cancer. Pharmacol Ther 237:108156

    CAS  PubMed  Google Scholar 

  • Kerns JS, Belgur C, Kanellias M, Manatakis DV, Barrile R, Tien-Street W, Ewart L, Gjorevski N, Cabon L (2023) Safety profiling of tumor-targeted T cell-bispecific antibodies with alveolus lung- and colon-on-chip. Bio Protoc 13

  • Kim J, Koo BK, Knoblich JA (2020) Human organoids: model systems for human biology and medicine. Nat Rev Mol Cell Biol 21:571–584

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim JY, Fluri DA, Marchan R, Boonen K, Mohanty S, Singh P, Hammad S, Landuyt B, Hengstler JG, Kelm JM, Hierlemann A, Frey O (2015) 3D spherical microtissues and microfluidic technology for multi-tissue experiments and analysis. J Biotechnol 205:24–35

    CAS  PubMed  Google Scholar 

  • Kim K, Doi A, Wen B, Ng K, Zhao R, Cahan P, Kim J, Aryee MJ, Ji H, Ehrlich LI, Yabuuchi A, Takeuchi A, Cunniff KC, Hongguang H, McKinney-Freeman S, Naveiras O, Yoon TJ, Irizarry RA, Jung N, Seita J, Hanna J, Murakami P, Jaenisch R, Weissleder R, Orkin SH, Weissman IL, Feinberg AP, Daley GQ (2010) Epigenetic memory in induced pluripotent stem cells. Nature 467:285–290

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim S, Lee H, Chung M, Jeon NL (2013) Engineering of functional, perfusable 3D microvascular networks on a chip. Lab Chip 13:1489–1500

    CAS  PubMed  Google Scholar 

  • Kim SY, Kim SM, Lim S, Lee JY, Choi SJ, Yang SD, Yun MR, Kim CG, Gu SR, Park C, Park AY, Lim SM, Heo SG, Kim H, Cho BC (2021) Modeling clinical responses to targeted therapies by patient-derived organoids of advanced lung adenocarcinoma. Clin Cancer Res 27:4397–4409

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kramer B, Haan L, Vermeer M, Olivier T, Hankemeier T, Vulto P, Joore J, Lanz HL (2019) Interstitial flow recapitulates gemcitabine chemoresistance in a 3D microfluidic pancreatic ductal adenocarcinoma model by induction of multidrug resistance proteins. Int J Mol Sci 20(18):4647

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lancaster MA, Knoblich JA (2014) Generation of cerebral organoids from human pluripotent stem cells. Nat Protoc 9:2329–2340

    CAS  PubMed  PubMed Central  Google Scholar 

  • LaValley DJ, Miller PG, Shuler ML (2021) Pumpless, unidirectional microphysiological system for testing metabolism-dependent chemotherapeutic toxicity. Biotechnol Prog 37:e3105

    CAS  PubMed  Google Scholar 

  • Lee E, Kwon C, Han H, Park J, Kim Y-C, Ok M-R, Seok H-K, Jeon H (2016) Bladder Cancer-on-a-Chip for Analysis of Tumor Transition Mechanism. In: Proceedings of the 10th world biomaterials congress, Montréal, QC, Canada

  • Lee JH, Kim SK, Khawar IA, Jeong SY, Chung S, Kuh HJ (2018) Microfluidic co-culture of pancreatic tumor spheroids with stellate cells as a novel 3D model for investigation of stroma-mediated cell motility and drug resistance. J Exp Clin Cancer Res 37:4

    PubMed  PubMed Central  Google Scholar 

  • Lee JM, Choi JW, Ahrberg CD, Choi HW, Ha JH, Mun SG, Mo SJ, Chung BG (2020) Generation of tumor spheroids using a droplet-based microfluidic device for photothermal therapy. Microsyst Nanoeng 6:52

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee MJ, Ye AS, Gardino AK, Heijink AM, Sorger PK, MacBeath G, Yaffe MB (2012) Sequential application of anticancer drugs enhances cell death by rewiring apoptotic signaling networks. Cell 149:780–794

    CAS  PubMed  PubMed Central  Google Scholar 

  • Leong TKM, Lo WS, Lee WEZ, Tan B, Lee XZ, Lee L, Lee JJ, Suresh N, Loo LH, Szu E, Yeong J (2021) Leveraging advances in immunopathology and artificial intelligence to analyze in vitro tumor models in composition and space. Adv Drug Deliv Rev 177:113959

    CAS  PubMed  Google Scholar 

  • Li Y, Gao X, Ni C, Zhao B, Cheng X (2023) The application of patient-derived organoid in the research of lung cancer. Cell Oncol 46:503–519

    Google Scholar 

  • Li Z, Xu H, Gong Y, Chen W, Zhan Y, Yu L, Sun Y, Li A, He S, Guan B, Wu Y, Xiong G, Fang D, He Y, Tang Q, Yao L, Hu Z, Mei H, He Z, Cai Z, Guo Y, Li X, Zhou L, Huang W (2022) Patient-derived upper tract urothelial carcinoma organoids as a platform for drug screening. Adv Sci 9:e2103999

    Google Scholar 

  • Lin Z, Luo G, Du W, Kong T, Liu C, Liu Z (2020) Recent advances in microfluidic platforms applied in cancer metastasis: circulating tumor cells’ (CTCs) isolation and tumor-on-a-chip. Small 16:e1903899

    PubMed  Google Scholar 

  • Liu PF, Cao YW, Zhang SD, Zhao Y, Liu XG, Shi HQ, Hu KY, Zhu GQ, Ma B, Niu HT (2015) A bladder cancer microenvironment simulation system based on a microfluidic co-culture model. Oncotarget 6:37695–37705

    PubMed  PubMed Central  Google Scholar 

  • Liu W, Song J, Du X, Zhou Y, Li Y, Li R, Lyu L, He Y, Hao J, Ben J, Wang W, Shi H, Wang Q (2019) AKR1B10 (Aldo-keto reductase family 1 B10) promotes brain metastasis of lung cancer cells in a multi-organ microfluidic chip model. Acta Biomater 91:195–208

    CAS  PubMed  Google Scholar 

  • Liu X, Fang J, Huang S, Wu X, Xie X, Wang J, Liu F, Zhang M, Peng Z, Hu N (2021) Tumor-on-a-chip: from bioinspired design to biomedical application. Microsyst Nanoeng 7:50

    PubMed  PubMed Central  Google Scholar 

  • Liu Y, Sakolish C, Chen Z, Phan DTT, Bender RHF, Hughes CCW, Rusyn I (2020) Human in vitro vascularized micro-organ and micro-tumor models are reproducible organ-on-a-chip platforms for studies of anticancer drugs. Toxicology 445:152601

    CAS  PubMed  Google Scholar 

  • Low LA, Mummery C, Berridge BR, Austin CP, Tagle DA (2021) Organs-on-chips: into the next decade. Nat Rev Drug Discov 20:345–361

    CAS  PubMed  Google Scholar 

  • Lu S, Cuzzucoli F, Jiang J, Liang LG, Wang Y, Kong M, Zhao X, Cui W, Li J, Wang S (2018) Development of a biomimetic liver tumor-on-a-chip model based on decellularized liver matrix for toxicity testing. Lab Chip 18:3379–3392

    CAS  PubMed  Google Scholar 

  • Mamani JB, Marinho BS, Rego GNA, Nucci MP, Alvieri F, Santos RSD, Ferreira JVM, Oliveira FA, Gamarra LF (2020) Magnetic hyperthermia therapy in glioblastoma tumor on-a-chip model. Einstein 18:eAO4954

    PubMed  Google Scholar 

  • Maschmeyer I, Lorenz AK, Schimek K, Hasenberg T, Ramme AP, Hubner J, Lindner M, Drewell C, Bauer S, Thomas A, Sambo NS, Sonntag F, Lauster R, Marx U (2015) A four-organ-chip for interconnected long-term co-culture of human intestine, liver, skin and kidney equivalents. Lab Chip 15:2688–2699

    CAS  PubMed  Google Scholar 

  • Materne EM, Maschmeyer I, Lorenz AK, Horland R, Schimek KM, Busek M, Sonntag F, Lauster R, Marx U (2015) The multi-organ chip–a microfluidic platform for long-term multi-tissue coculture. J vis Exp 98:e52526

    Google Scholar 

  • Mathur L, Ballinger M, Utharala R, Merten CA (2019) Microfluidics as an enabling technology for personalized cancer therapy. Small 16(9):1904321

    Google Scholar 

  • Mathur L, Ballinger M, Utharala R, Merten CA (2020) Microfluidics as an enabling technology for personalized cancer therapy. Small 16:e1904321

    PubMed  Google Scholar 

  • Menna P, Salvatorelli E, Minotti G (2008) Cardiotoxicity of antitumor drugs. Chem Res Toxicol 21:978–989

    CAS  PubMed  Google Scholar 

  • Mi S, Liu Z, Du Z, Yi X, Sun W (2019) Three-dimensional microfluidic tumor-macrophage system for breast cancer cell invasion. Biotechnol Bioeng 116:1731–1741

    CAS  PubMed  Google Scholar 

  • Montanez-Sauri SI, Sung KE, Berthier E, Beebe DJ (2013) Enabling screening in 3D microenvironments: probing matrix and stromal effects on the morphology and proliferation of T47D breast carcinoma cells. Integr Biol 5:631–640

    CAS  Google Scholar 

  • Moore N, Doty D, Zielstorff M, Kariv I, Moy LY, Gimbel A, Chevillet JR, Lowry N, Santos J, Mott V, Kratchman L, Lau T, Addona G, Chen H, Borenstein JT (2018) A multiplexed microfluidic system for evaluation of dynamics of immune-tumor interactions. Lab Chip 18:1844–1858

    CAS  PubMed  Google Scholar 

  • Nagaraju S, Truong D, Mouneimne G, Nikkhah M (2018) Microfluidic tumor-vascular model to study breast cancer cell invasion and intravasation. Adv Healthc Mater 7:e1701257

    PubMed  Google Scholar 

  • Nguyen DH, Stapleton SC, Yang MT, Cha SS, Choi CK, Galie PA, Chen CS (2013) Biomimetic model to reconstitute angiogenic sprouting morphogenesis in vitro. Proc Natl Acad Sci U S A 110:6712–6717

    CAS  PubMed  PubMed Central  Google Scholar 

  • Novak R, Ingram M, Marquez S, Das D, Delahanty A, Herland A, Maoz BM, Jeanty SSF, Somayaji MR, Burt M, Calamari E, Chalkiadaki A, Cho A, Choe Y, Chou DB, Cronce M, Dauth S, Divic T, Fernandez-Alcon J, Ferrante T, Ferrier J, FitzGerald EA, Fleming R, Jalili-Firoozinezhad S, Grevesse T, Goss JA, Hamkins-Indik T, Henry O, Hinojosa C, Huffstater T, Jang KJ, Kujala V, Leng L, Mannix R, Milton Y, Nawroth J, Nestor BA, Ng CF, O’Connor B, Park TE, Sanchez H, Sliz J, Sontheimer-Phelps A, Swenor B, Thompson G 2nd, Touloumes GJ, Tranchemontagne Z, Wen N, Yadid M, Bahinski A, Hamilton GA, Levner D, Levy O, Przekwas A, Prantil-Baun R, Parker KK, Ingber DE (2020) Robotic fluidic coupling and interrogation of multiple vascularized organ chips. Nat Biomed Eng 4:407–420

    PubMed  PubMed Central  Google Scholar 

  • Nunes SS, Miklas JW, Liu J, Aschar-Sobbi R, Xiao Y, Zhang B, Jiang J, Massé S, Gagliardi M, Hsieh A, Thavandiran N, Laflamme MA, Nanthakumar K, Gross GJ, Backx PH, Keller G, Radisic M (2013) Biowire: a platform for maturation of human pluripotent stem cell-derived cardiomyocytes. Nat Methods 10:781–787

    CAS  PubMed  PubMed Central  Google Scholar 

  • Oliver CR, Altemus MA, Westerhof TM, Cheriyan H, Cheng X, Dziubinski M, Wu Z, Yates J, Morikawa A, Heth J, Castro MG, Leung BM, Takayama S, Merajver SD (2019) A platform for artificial intelligence based identification of the extravasation potential of cancer cells into the brain metastatic niche. Lab Chip 19:1162–1173

    CAS  PubMed  PubMed Central  Google Scholar 

  • Olubajo F, Achawal S, Greenman J (2020) Development of a microfluidic culture paradigm for ex vivo maintenance of human glioblastoma tissue: a new glioblastoma model? Transl Oncol 13:1–10

    PubMed  Google Scholar 

  • Palmer AC, Sorger PK (2017) Combination cancer therapy can confer benefit via patient-to-patient variability without drug additivity or synergy. Cell 171:1678-1691.e1613

    CAS  PubMed  PubMed Central  Google Scholar 

  • Papapetrou EP (2016) Patient-derived induced pluripotent stem cells in cancer research and precision oncology. Nat Med 22:1392–1401

    CAS  PubMed  PubMed Central  Google Scholar 

  • Park K (2013) Facing the truth about nanotechnology in drug delivery. ACS Nano 7:7442–7447

    CAS  PubMed  PubMed Central  Google Scholar 

  • Park TE, Mustafaoglu N, Herland A, Hasselkus R, Mannix R, FitzGerald EA, Prantil-Baun R, Watters A, Henry O, Benz M, Sanchez H, McCrea HJ, Goumnerova LC, Song HW, Palecek SP, Shusta E, Ingber DE (2019) Hypoxia-enhanced blood-brain barrier chip recapitulates human barrier function and shuttling of drugs and antibodies. Nat Commun 10:2621

    PubMed  PubMed Central  Google Scholar 

  • Pavesi A, Tan AT, Koh S, Chia A, Colombo M, Antonecchia E, Miccolis C, Ceccarello E, Adriani G, Raimondi MT, Kamm RD, Bertoletti A (2017) A 3D microfluidic model for preclinical evaluation of TCR-engineered T cells against solid tumors. JCI Insight 2:e89762

    PubMed  PubMed Central  Google Scholar 

  • Prestwich GD (2008) Evaluating drug efficacy and toxicology in three dimensions: using synthetic extracellular matrices in drug discovery. Acc Chem Res 41:139–148

    CAS  PubMed  Google Scholar 

  • Qian BZ, Pollard JW (2010) Macrophage diversity enhances tumor progression and metastasis. Cell 141:39–51

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rabbani M, Kanevsky J, Kafi K, Chandelier F, Giles FJ (2018) Role of artificial intelligence in the care of patients with nonsmall cell lung cancer. Eur J Clin Invest 48(4):e12901

    Google Scholar 

  • Rajamohan D, Matsa E, Kalra S, Crutchley J, Patel A, George V, Denning C (2013) Current status of drug screening and disease modelling in human pluripotent stem cells. BioEssays 35:281–298

    CAS  PubMed  Google Scholar 

  • Regmi S, Poudel C, Adhikari R, Luo KQ (2022) Applications of microfluidics and organ-on-a-chip in cancer research. Biosensors 12(7):459

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ribas A, Wolchok JD (2018) Cancer immunotherapy using checkpoint blockade. Science 359:1350–1355

    CAS  PubMed  PubMed Central  Google Scholar 

  • Robertson S, Azizpour H, Smith K, Hartman J (2018) Digital image analysis in breast pathology-from image processing techniques to artificial intelligence. Transl Res 194:19–35

    PubMed  Google Scholar 

  • Ronaldson-Bouchard K, Vunjak-Novakovic G (2018) Organs-on-a-chip: a fast track for engineered human tissues in drug development. Cell Stem Cell 22:310–324

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sahin U (2018) Studying tumor-reactive T cells: a personalized organoid model. Cell Stem Cell 23:318–319

    CAS  PubMed  Google Scholar 

  • Sanghvi AB, Allen EZ, Callenberg KM, Pantanowitz L (2019) Performance of an artificial intelligence algorithm for reporting urine cytopathology. Cancer Cytopathol 127:658–666

    PubMed  Google Scholar 

  • Schenke-Layland K, Nerem RM (2011) In vitro human tissue models–moving towards personalized regenerative medicine. Adv Drug Deliv Rev 63:195–196

    CAS  PubMed  Google Scholar 

  • Schietinger A, Philip M, Schreiber H (2008) Specificity in cancer immunotherapy. Semin Immunol 20:276–285

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schumacher TN, Schreiber RD (2015) Neoantigens in cancer immunotherapy. Science 348:69–74

    CAS  PubMed  Google Scholar 

  • Schuster B, Junkin M, Kashaf SS, Romero-Calvo I, Kirby K, Matthews J, Weber CR, Rzhetsky A, White KP, Tay S (2020) Automated microfluidic platform for dynamic and combinatorial drug screening of tumor organoids. Nat Commun 11:5271

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shah MA, Schwartz GK (2000) The relevance of drug sequence in combination chemotherapy. Drug Resist Updat 3:335–356

    CAS  PubMed  Google Scholar 

  • Shah P, Fritz JV, Glaab E, Desai MS, Greenhalgh K, Frachet A, Niegowska M, Estes M, Jäger C, Seguin-Devaux C, Zenhausern F, Wilmes P (2016) A microfluidics-based in vitro model of the gastrointestinal human-microbe interface. Nat Commun 7:11535

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sharifi F, Yesil-Celiktas O, Kazan A et al (2020) A hepatocellular carcinoma–bone metastasis-on-a-chip model for studying thymoquinone-loaded anticancer nanoparticles. Bio-Des Manuf 3:189–202

    CAS  Google Scholar 

  • Skardal A, Devarasetty M, Forsythe S, Atala A, Soker S (2016a) A reductionist metastasis-on-a-chip platform for in vitro tumor progression modeling and drug screening. Biotechnol Bioeng 113:2020–2032

    CAS  PubMed  PubMed Central  Google Scholar 

  • Skardal A, Devarasetty M, Soker S, Hall AR (2015) In situ patterned micro 3D liver constructs for parallel toxicology testing in a fluidic device. Biofabrication 7:031001–031001

    PubMed  PubMed Central  Google Scholar 

  • Skardal A, Shupe T, Atala A (2016b) Organoid-on-a-chip and body-on-a-chip systems for drug screening and disease modeling. Drug Discov Today 21:1399–1411

    CAS  PubMed  PubMed Central  Google Scholar 

  • Somaweera H, Ibraguimov A, Pappas D (2016) A review of chemical gradient systems for cell analysis. Anal Chim Acta 907:7–17

    CAS  PubMed  Google Scholar 

  • Subia B, Dahiya UR, Mishra S, Ayache J, Casquillas GV, Caballero D, Reis RL, Kundu SC (2021) Breast tumor-on-chip models: from disease modeling to personalized drug screening. J Control Release 331:103–120

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sung JH, Kam C, Shuler ML (2010) A microfluidic device for a pharmacokinetic-pharmacodynamic (PK-PD) model on a chip. Lab Chip 10:446–455

    CAS  PubMed  Google Scholar 

  • Sung JH, Shuler ML (2009) A micro cell culture analog (microCCA) with 3-D hydrogel culture of multiple cell lines to assess metabolism-dependent cytotoxicity of anti-cancer drugs. Lab Chip 9:1385–1394

    CAS  PubMed  Google Scholar 

  • Sung KE, Yang N, Pehlke C, Keely PJ, Eliceiri KW, Friedl A, Beebe DJ (2011) Transition to invasion in breast cancer: a microfluidic in vitro model enables examination of spatial and temporal effects. Integr Biol 3:439–450

    CAS  Google Scholar 

  • Tadimety A, Syed A, Nie Y, Long CR, Kready KM, Zhang JXJ (2017) Liquid biopsy on chip: a paradigm shift towards the understanding of cancer metastasis. Integr Biol 9:22–49

    Google Scholar 

  • Terry SCJ, Jerman JH, Angell JB (1979) A gas chromatographic air analyzer fabricated on a silicon wafer. IEEE Trans 26:1880–1886

    Google Scholar 

  • Trapecar M, Wogram E, Svoboda D, Communal C, Omer A, Lungjangwa T, Sphabmixay P, Velazquez J, Schneider K, Wright CW, Mildrum S, Hendricks A, Levine S, Muffat J, Lee MJ, Lauffenburger DA, Trumper D, Jaenisch R, Griffith LG (2021) Human physiomimetic model integrating microphysiological systems of the gut, liver, and brain for studies of neurodegenerative diseases. Sci Adv 7(5):eabd1707

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vanneman M, Dranoff G (2012) Combining immunotherapy and targeted therapies in cancer treatment. Nat Rev Cancer 12:237–251

    CAS  PubMed  PubMed Central  Google Scholar 

  • Venditto VJ, Szoka FC Jr (2013) Cancer nanomedicines: so many papers and so few drugs! Adv Drug Deliv Rev 65:80–88

    CAS  PubMed  Google Scholar 

  • Vlachogiannis G, Hedayat S, Vatsiou A, Jamin Y, Fernández-Mateos J, Khan K, Lampis A, Eason K, Huntingford I, Burke R, Rata M, Koh DM, Tunariu N, Collins D, Hulkki-Wilson S, Ragulan C, Spiteri I, Moorcraft SY, Chau I, Rao S, Watkins D, Fotiadis N, Bali M, Darvish-Damavandi M, Lote H, Eltahir Z, Smyth EC, Begum R, Clarke PA, Hahne JC, Dowsett M, de Bono J, Workman P, Sadanandam A, Fassan M, Sansom OJ, Eccles S, Starling N, Braconi C, Sottoriva A, Robinson SP, Cunningham D, Valeri N (2018) Patient-derived organoids model treatment response of metastatic gastrointestinal cancers. Science 359:920–926

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz LA Jr, Kinzler KW (2013) Cancer genome landscapes. Science 339:1546–1558

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wagner I, Materne EM, Brincker S, Süssbier U, Frädrich C, Busek M, Sonntag F, Sakharov DA, Trushkin EV, Tonevitsky AG, Lauster R, Marx U (2013) A dynamic multi-organ-chip for long-term cultivation and substance testing proven by 3D human liver and skin tissue co-culture. Lab Chip 13:3538–3547

    CAS  PubMed  Google Scholar 

  • Wang G, Sun Y, Jiang S, Wu G, Liao W, Chen Y, Lin Z, Liu Z, Zhuo S (2021) Machine learning-based rapid diagnosis of human borderline ovarian cancer on second-harmonic generation images. Biomed Opt Express 12:5658–5669

    PubMed  PubMed Central  Google Scholar 

  • Wang S, Gao D, Chen Y (2017) The potential of organoids in urological cancer research. Nat Rev Urol 14:401–414

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Phan DT, Sobrino A, George SC, Hughes CC, Lee AP (2016) Engineering anastomosis between living capillary networks and endothelial cell-lined microfluidic channels. Lab Chip 16:282–290

    PubMed  PubMed Central  Google Scholar 

  • Wang Y, Wu D, Wu G, Wu J, Lu S, Lo J, He Y, Zhao C, Zhao X, Zhang H, Wang S (2020) Metastasis-on-a-chip mimicking the progression of kidney cancer in the liver for predicting treatment efficacy. Theranostics 10:300–311

    PubMed  PubMed Central  Google Scholar 

  • Wang YI, Carmona C, Hickman JJ, Shuler ML (2018) Multiorgan microphysiological systems for drug development: strategies, advances, and challenges. Adv Healthc Mater 7(2):1701000

    Google Scholar 

  • Warkiani ME, Khoo BL, Wu L, Tay AK, Bhagat AA, Han J, Lim CT (2016) Ultra-fast, label-free isolation of circulating tumor cells from blood using spiral microfluidics. Nat Protoc 11:134–148

    CAS  PubMed  Google Scholar 

  • Wu Q, Liu J, Wang X, Feng L, Wu J, Zhu X, Wen W, Gong X (2020) Organ-on-a-chip: recent breakthroughs and future prospects. Biomed Eng Online 19:9

    PubMed  PubMed Central  Google Scholar 

  • Wyckoff JB, Wang Y, Lin EY, Li JF, Goswami S, Stanley ER, Segall JE, Pollard JW, Condeelis J (2007) Direct visualization of macrophage-assisted tumor cell intravasation in mammary tumors. Cancer Res 67:2649–2656

    CAS  PubMed  Google Scholar 

  • Xiao Y, Kim D, Dura B, Zhang K, Yan R, Li H, Han E, Ip J, Zou P, Liu J, Chen AT, Vortmeyer AO, Zhou J, Fan R (2019) Ex vivo dynamics of human glioblastoma cells in a microvasculature-on-a-chip system correlates with tumor heterogeneity and subtypes. Adv Sci (weinh) 6:1801531

    PubMed  Google Scholar 

  • Xu XD, Shao SX, Cao YW, Yang XC, Shi HQ, Wang YL, Xue SY, Wang XS, Niu HT (2015) The study of energy metabolism in bladder cancer cells in co-culture conditions using a microfluidic chip. Int J Clin Exp Med 8:12327–12336

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xu Z, Gao Y, Hao Y, Li E, Wang Y, Zhang J, Wang W, Gao Z, Wang Q (2013) Application of a microfluidic chip-based 3D co-culture to test drug sensitivity for individualized treatment of lung cancer. Biomaterials 34:4109–4117

    CAS  PubMed  Google Scholar 

  • Xu Z, Li E, Guo Z, Yu R, Hao H, Xu Y, Sun Z, Li X, Lyu J, Wang Q (2016) Design and construction of a multi-organ microfluidic chip mimicking the in vivo microenvironment of lung cancer metastasis. ACS Appl Mater Interfaces 8:25840–25847

    CAS  PubMed  Google Scholar 

  • Yang X, Li K, Zhang X, Liu C, Guo B, Wen W, Gao X (2018) Nanofiber membrane supported lung-on-a-chip microdevice for anti-cancer drug testing. Lab Chip 18:486–495

    CAS  PubMed  Google Scholar 

  • Yang Y, Yang X, Zou J, Jia C, Hu Y, Du H, Wang H (2015) Evaluation of photodynamic therapy efficiency using an in vitro three-dimensional microfluidic breast cancer tissue model. Lab Chip 15:735–744

    CAS  PubMed  Google Scholar 

  • Yao Y, Xu X, Yang L, Zhu J, Wan J, Shen L, Xia F, Fu G, Deng Y, Pan M, Guo Q, Gao X, Li Y, Rao X, Zhou Y, Liang L, Wang Y, Zhang J, Zhang H, Li G, Zhang L, Peng J, Cai S, Hu C, Gao J, Clevers H, Zhang Z, Hua G (2020) Patient-derived organoids predict chemoradiation responses of locally advanced rectal cancer. Cell Stem Cell 26:17-26.e16

    CAS  PubMed  Google Scholar 

  • Yap YS, Leong MC, Chua YW, Loh KWJ, Lee GE, Lim EH, Dent R, Ng RCH, Lim JH, Singh G, Tan A, Guan G, Wu A, Lee YF, Bhagat AAS, Lim DW (2019) Detection and prognostic relevance of circulating tumour cells (CTCs) in Asian breast cancers using a label-free microfluidic platform. PLoS ONE 14:e0221305

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yu F, Zhuo S, Qu Y, Choudhury D, Wang Z, Iliescu C, Yu H (2017) On chip two-photon metabolic imaging for drug toxicity testing. Biomicrofluidics 11:034108

    PubMed  PubMed Central  Google Scholar 

  • Yu M, Bardia A, Aceto N, Bersani F, Madden MW, Donaldson MC, Desai R, Zhu H, Comaills V, Zheng Z, Wittner BS, Stojanov P, Brachtel E, Sgroi D, Kapur R, Shioda T, Ting DT, Ramaswamy S, Getz G, Iafrate AJ, Benes C, Toner M, Maheswaran S, Haber DA (2014) Cancer therapy. Ex vivo culture of circulating breast tumor cells for individualized testing of drug susceptibility. Science 345:216–220

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yuzhalin AE (2022) Parallels between the extracellular matrix roles in developmental biology and cancer biology. Semin Cell Dev Biol 128:90–102

    CAS  PubMed  Google Scholar 

  • Zervantonakis IK, Hughes-Alford SK, Charest JL, Condeelis JS, Gertler FB, Kamm RD (2012) Three-dimensional microfluidic model for tumor cell intravasation and endothelial barrier function. Proc Natl Acad Sci U S A 109:13515–13520

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang YS, Aleman J, Shin SR, Kilic T, Kim D, Mousavi Shaegh SA, Massa S, Riahi R, Chae S, Hu N, Avci H, Zhang W, Silvestri A, Sanati Nezhad A, Manbohi A, De Ferrari F, Polini A, Calzone G, Shaikh N, Alerasool P, Budina E, Kang J, Bhise N, Ribas J, Pourmand A, Skardal A, Shupe T, Bishop CE, Dokmeci MR, Atala A, Khademhosseini A (2017) Multisensor-integrated organs-on-chips platform for automated and continual in situ monitoring of organoid behaviors. Proc Natl Acad Sci U S A 114:E2293-e2302

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao L, Wang Z, Fan S, Meng Q, Li B, Shao S, Wang Q (2010) Chemotherapy resistance research of lung cancer based on micro-fluidic chip system with flow medium. Biomed Microdevices 12:325–332

    CAS  PubMed  Google Scholar 

  • Zuchowska A, Kwapiszewska K, Chudy M, Dybko A, Brzozka Z (2017) Studies of anticancer drug cytotoxicity based on long-term HepG2 spheroid culture in a microfluidic system. Electrophoresis 38:1206–1216

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liu Cao.

Ethics declarations

Conflict of interest

The authors declare no potential conflicts of interest.

Ethical statement

The research protocol was approved by an Institutional Review Board.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Y., Zhou, T. & Cao, L. Use and application of organ-on-a-chip platforms in cancer research. J. Cell Commun. Signal. 17, 1163–1179 (2023). https://doi.org/10.1007/s12079-023-00790-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12079-023-00790-7

Keywords

Navigation