Skip to main content
Log in

Cell cycle protein BORA is associated with colorectal cancer progression by AURORA-PLK1 cascades: a bioinformatics analysis

  • Research article
  • Published:
Journal of Cell Communication and Signaling Aims and scope

Abstract

Colorectal cancer (CRC) is the third most diagnosed cancer in the world. A better understanding of the molecular mechanism of CRC is essential for making novel strategies for the CRC management and its prevention. The present study aims to explore the molecular mechanism through integrated bioinformatics analysis by analyzing genes and their co-expression pattern in normal and CRC states. GSE110223, GSE110224 and GSE113513 gene expression profiles were analyzed in this study. The co-expression networks for normal and tumor samples were constructed separately and analyzed to identify the modules, sub-networks and key genes. Gene regulatory network analysis was done to understand the regulatory mechanism of selected genes. Survival analysis was performed for the identified sub-networks and key genes to understand their role in CRC progression. A total of seven modules were detected and the KEGG pathway analysis revealed these modules were mainly enriched with cell cycle, metabolism and signaling-related pathways. E2F6 and ETV4 transcription factors regulating the activity of multiple genes of identified modules were found to be up-regulated in CRC. Six Sub-networks and seven key genes, BORA, CCT7, DTL, RUVBL1, RUVBL2, THEM6 and TMEM97 associated with the CRC progression were identified. Disease-gene association analysis identified a novel association of the BORA gene with CRC that activates and regulates the AURORA-PLK1 cascades in the cell cycle. Survival analysis indicates that the overexpressed BORA is associated with unfavourable overall survival in CRC. The mechanistic role of BORA in the regulation of cell cycle progression suggests that BORA might act as a potential therapeutic target for CRC.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

Download references

Acknowledgements

The authors would like to thank the anonymous reviewers for their insightful comments. The Authors also thanks Birla Institute of Technology and Science, Pilani, K.K. Birla Goa Campus for supporting this work.

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Contributions

MM and SM conceived and designed the experiments. MM, AS and SM analyzed and interpreted the results of the experiments. MM performed the experiments. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Sukanta Mondal.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (pdf 6158 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahajan, M., Sarkar, A. & Mondal, S. Cell cycle protein BORA is associated with colorectal cancer progression by AURORA-PLK1 cascades: a bioinformatics analysis. J. Cell Commun. Signal. 17, 773–791 (2023). https://doi.org/10.1007/s12079-022-00719-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12079-022-00719-6

Keywords

Navigation