Abstract
Interleukin-18 (IL-18) is a member of the IL-1 family of cytokines and was initially described as an IFN-γ-inducing factor derived from anti-CD3-stimulated T-helper (Th)1 cells. IL-18 plays a significant role in the activation of hematopoietic cell types mediating both Th1 and Th2 responses and is the primary inducer of interferon-γ in these cells. The biological activity of IL-18 is mediated through its binding to the IL-18 receptor complex and activation of nuclear factor-κB (NF-κB), culminating in the production and release of several cytokines, chemokines, and cellular adhesion molecules. In certain cell types, IL-18 also activates mitogen-activated protein kinases (MAPKs) and phosphoinositide 3-kinase/ AKT serine/threonine kinase (PI3K/AKT) signaling modules leading to the production and release of proinflammatory cytokines. IL-18-mediated signaling acts as one of the vital components of the immunomodulatory cytokine networks involved in host defense, inflammation, and tissue regeneration. Albeit its biomedical importance, a comprehensive resource of IL-18 mediated signaling pathway is currently lacking. In this study, we report on the development of an integrated pathway map of IL-18/IL-18R signaling. The pathway map was developed through literature mining from published literature based on manual curation guidelines adapted from NetPath and includes information on 16 protein-protein interaction events, 38 enzyme-catalysis events, 12 protein translocation events, 26 activations/inhibition events, transcriptional regulators, 230 gene regulation events and 84 induced protein expression events. The IL-18 signaling pathway can be freely accessed through the WikiPathways database (https://www.wikipathways.org/index.php/Pathway:WP4754).
This is a preview of subscription content,
to check access.
Abbreviations
- IL-18:
-
Interleukin-18
- IFNγ:
-
Interferon gamma
- IL-1β:
-
Interleukin-1beta
- M-CSF:
-
Macrophage colony-stimulating factor
- NF-κB:
-
Nuclear factor-κB
- PPI:
-
Protein-protein interaction
- IL-18BP:
-
Interleukin-18 binding protein
References
Adachi O et al (1998) Targeted disruption of the MyD88 gene results in loss of IL-1- and IL-18-mediated function. Immunity 9:143–150. https://doi.org/10.1016/s1074-7613(00)80596-8
Akdis M et al (2016) Interleukins (from IL-1 to IL-38), interferons, transforming growth factor beta, and TNF-alpha: receptors, functions, and roles in diseases. J Allergy Clin Immunol 138:984–1010. https://doi.org/10.1016/j.jaci.2016.06.033
Alboni S, Cervia D, Sugama S, Conti B (2010) Interleukin 18 in the CNS. J Neuroinflammation 7:9. https://doi.org/10.1186/1742-2094-7-94-2094-7-9
Alsaleh G et al (2009) Bruton’s tyrosine kinase is involved in miR-346-related regulation of IL-18 release by lipopolysaccharide-activated rheumatoid fibroblast-like synoviocytes. J Immunol 182:5088–5097. https://doi.org/10.4049/jimmunol.0801613
Andoh T, Kishi H, Motoki K, Nakanishi K, Kuraishi Y, Muraguchi A (2008) Protective effect of IL-18 on kainate- and IL-1 beta-induced cerebellar ataxia in mice. J Immunol 180:2322–2328. doi:180/4/2322 [pii]
Arend WP, Palmer G, Gabay C (2008) IL-1, IL-18, and IL-33 families of cytokines. Immunol Rev 223:20–38. https://doi.org/10.1111/j.1600-065X.2008.00624.x
Banda NK et al (2003) Mechanisms of inhibition of collagen-induced arthritis by murine IL-18 binding protein. J Immunol 170:2100–2105
Bellora F et al (2012) M-CSF induces the expression of a membrane-bound form of IL-18 in a subset of human monocytes differentiating in vitro toward macrophages. Eur J Immunol 42:1618–1626. https://doi.org/10.1002/eji.201142173
Bhat SA et al (2019) A network map of netrin receptor UNC5B-mediated signaling. J Cell Commun Signal 13:121–127. https://doi.org/10.1007/s12079-018-0485-z
Blankenberg S, Tiret L, Bickel C, Peetz D, Cambien F, Meyer J, Rupprecht HJ (2002) Interleukin-18 is a strong predictor of cardiovascular death in stable and unstable angina. Circulation 106:24–30
Boraschi D, Tagliabue A (2013) The interleukin-1 receptor family. Semin Immunol 25:394–407. https://doi.org/10.1016/j.smim.2013.10.023
Born TL, Thomassen E, Bird TA, Sims JE (1998) Cloning of a novel receptor subunit, AcPL, required for interleukin-18 signaling. J Biol Chem 273:29445–29450
Bossaller L et al (2012) Cutting edge: FAS (CD95) mediates noncanonical IL-1beta and IL-18 maturation via caspase-8 in an RIP3-independent manner. J Immunol 189:5508–5512. https://doi.org/10.4049/jimmunol.1202121
Briend E et al (2017) IL-18 associated with lung lymphoid aggregates drives IFNgamma production in severe COPD. Respir Res 18:159. https://doi.org/10.1186/s12931-017-0641-7
Canna SW et al (2014) An activating NLRC4 inflammasome mutation causes autoinflammation with recurrent macrophage activation syndrome. Nat Genet 46:1140–1146. https://doi.org/10.1038/ng.3089
Cao Z, Henzel WJ, Gao X (1996) IRAK: a kinase associated with the interleukin-1 receptor. Science 271:1128–1131. https://doi.org/10.1126/science.271.5252.1128
Carta S, Lavieri R, Rubartelli A (2013) Different members of the IL-1 family come out in different ways: DAMPs vs. cytokines? Front Immunol 4:123. https://doi.org/10.3389/fimmu.2013.00123
Chaix J et al (2008) Cutting edge: priming of NK cells by IL-18. J Immunol 181:1627–1631. https://doi.org/10.4049/jimmunol.181.3.1627
Chandrasekar B, Boylston WH, Venkatachalam K, Webster NJ, Prabhu SD, Valente AJ (2008) Adiponectin blocks interleukin-18-mediated endothelial cell death via APPL1-dependent AMP-activated protein kinase (AMPK) activation and IKK/NF-kappaB/PTEN suppression. J Biol Chem 283:24889–24898. https://doi.org/10.1074/jbc.M804236200
Chandrasekar B et al (2006a) Interleukin-18-induced human coronary artery smooth muscle cell migration is dependent on NF-kappaB- and AP-1-mediated matrix metalloproteinase-9 expression and is inhibited by atorvastatin. J Biol Chem 281:15099–15109. https://doi.org/10.1074/jbc.M600200200
Chandrasekar B et al (2005) The pro-atherogenic cytokine interleukin-18 induces CXCL16 expression in rat aortic smooth muscle cells via MyD88, interleukin-1 receptor-associated kinase, tumor necrosis factor receptor-associated factor 6, c-Src, phosphatidylinositol 3-kinase, Akt, c-Jun N-terminal kinase, and activator protein-1 signaling. J Biol Chem 280:26263–26277. 251074/jbc.M502586200
Chandrasekar B, Valente AJ, Freeman GL, Mahimainathan L, Mummidi S (2006b) Interleukin-18 induces human cardiac endothelial cell death via a novel signaling pathway involving NF-kappaB-dependent PTEN activation. Biochem Biophys Res Commun 339:956–963. https://doi.org/10.1016/j.bbrc.2005.11.100
Chandrasekar B, Vemula K, Surabhi RM, Li-Weber M, Owen-Schaub LB, Jensen LE, Mummidi S (2004) Activation of intrinsic and extrinsic proapoptotic signaling pathways in interleukin-18-mediated human cardiac endothelial cell death. J Biol Chem 279:20221–20233. https://doi.org/10.1074/jbc.M313980200
Chen L, Li C, Peng Z, Zhao J, Gong G, Tan D (2013) miR-197 expression in peripheral blood mononuclear cells from hepatitis B virus-infected patients. Gut Liver 7:335–342. https://doi.org/10.5009/gnl.2013.7.3.335
Cheung H, Chen NJ, Cao Z, Ono N, Ohashi PS, Yeh WC (2005) Accessory protein-like is essential for IL-18-mediated signaling. J Immunol 174:5351–5357. https://doi.org/10.4049/jimmunol.174.9.5351
Colafrancesco S, Priori R, Alessandri C, Perricone C, Pendolino M, Picarelli G, Valesini G (2012) IL-18 serum level in adult onset Still’s disease: a marker of disease activity. Int J Inflam 2012:156890. https://doi.org/10.1155/2012/156890
Culhane AC, Hall MD, Rothwell NJ, Luheshi GN (1998) Cloning of rat brain interleukin-18 cDNA. Mol Psychiatry 3:362–366
Dai SM, Matsuno H, Nakamura H, Nishioka K, Yudoh K (2004) Interleukin-18 enhances monocyte tumor necrosis factor alpha and interleukin-1beta production induced by direct contact with T lymphocytes: implications in rheumatoid arthritis. Arthritis Rheum 50:432–443. https://doi.org/10.1002/art.20064
De Nardo D, Latz E (2011) NLRP3 inflammasomes link inflammation and metabolic disease. Trends Immunol 32:373–379. https://doi.org/10.1016/j.it.2011.05.004
Deason K et al (2018) BCAP links IL-1R to the PI3K-mTOR pathway and regulates pathogenic Th17 cell differentiation. J Exp Med 215:2413–2428. https://doi.org/10.1084/jem.20171810
Dinarello CA (1999) IL-18: a TH1-inducing, proinflammatory cytokine and new member of the IL-1 family. J Allergy Clin Immunol 103:11–24. https://doi.org/10.1016/s0091-6749(99)70518-x
Dinarello CA (2001) Novel targets for interleukin 18 binding protein. Ann Rheum Dis 60 (Suppl 3): iii18-24. https://doi.org/10.1136/ard.60.90003.iii18
Dinarello CA (2018) Overview of the IL-1 family in innate inflammation and acquired immunity. Immunol Rev 281:8–27. https://doi.org/10.1111/imr.12621
Dinarello CA, Novick D, Kim S, Kaplanski G (2013) Interleukin-18 and IL-18 binding protein. Front Immunol 4:289. https://doi.org/10.3389/fimmu.2013.00289
Doffinger R et al (2001) X-linked anhidrotic ectodermal dysplasia with immunodeficiency is caused by impaired NF-kappaB signaling. Nat Genet 27:277–285. https://doi.org/10.1038/85837
Dupaul-Chicoine J et al (2015) The Nlrp3 Inflammasome suppresses colorectal Cancer metastatic growth in the liver by promoting natural killer cell Tumoricidal activity. Immunity 43:751–763. https://doi.org/10.1016/j.immuni.2015.08.013
El-Darawish Y et al (2018) Frontline science: IL-18 primes murine NK cells for proliferation by promoting protein synthesis, survival, and autophagy. J Leukoc Biol 104:253–264. https://doi.org/10.1002/JLB.1HI1017-396RR
Fabbi M, Carbotti G, Ferrini S (2015) Context-dependent role of IL-18 in cancer biology and counter-regulation by IL-18BP. J Leukoc Biol 97:665–675. https://doi.org/10.1189/jlb.5RU0714-360RR
Faggioni R et al (2001) IL-18-binding protein protects against lipopolysaccharide- induced lethality and prevents the development of Fas/Fas ligand-mediated models of liver disease in mice. J Immunol 167:5913–5920
Fagundes CT et al (2011) IFN-gamma production depends on IL-12 and IL-18 combined action and mediates host resistance to dengue virus infection in a nitric oxide-dependent manner. PLoS Negl Trop Dis 5:e1449. https://doi.org/10.1371/journal.pntd.0001449
Fahey E, Doyle SL (2019) IL-1 family cytokine regulation of vascular permeability and angiogenesis. Front Immunol 10:1426. https://doi.org/10.3389/fimmu.2019.01426
Finotto S et al (2004) Severe hepatic injury in interleukin 18 (IL-18) transgenic mice: a key role for IL-18 in regulating hepatocyte apoptosis in vivo. Gut 53:392–400. https://doi.org/10.1136/gut.2003.018572
Gerdes N, Sukhova GK, Libby P, Reynolds RS, Young JL, Schonbeck U (2002) Expression of interleukin (IL)-18 and functional IL-18 receptor on human vascular endothelial cells, smooth muscle cells, and macrophages: implications for atherogenesis. J Exp Med 195:245–257. https://doi.org/10.1084/jem.20011022
Girard-Guyonvarc'h C, Palomo J, Martin P, Rodriguez E, Troccaz S, Palmer G, Gabay C (2018) Unopposed IL-18 signaling leads to severe TLR9-induced macrophage activation syndrome in mice. Blood 131:1430–1441. https://doi.org/10.1182/blood-2017-06-789552
Girard C et al (2016) Elevated serum levels of free interleukin-18 in adult-onset Still’s disease. Rheumatology (Oxford) 55:2237–2247. https://doi.org/10.1093/rheumatology/kew300
Harms RZ, Creer AJ, Lorenzo-Arteaga KM, Ostlund KR, Sarvetnick NE (2017) Interleukin (IL)-18 binding protein deficiency disrupts natural killer cell maturation and diminishes circulating IL-18. Front Immunol 8:1020. https://doi.org/10.3389/fimmu.2017.01020
He Z et al (2008) Interleukin-18 binding protein transgenic mice are protected against ischemic acute kidney injury. Am J Physiol Renal Physiol 295:F1414–F1421. https://doi.org/10.1152/ajprenal.90288.2008
Hedtjarn M, Leverin AL, Eriksson K, Blomgren K, Mallard C, Hagberg H (2002) Interleukin-18 involvement in hypoxic-ischemic brain injury. J Neurosci 22:5910–5919. doi:20026587 22/14/5910 [pii]
Hoffman HM, Mueller JL, Broide DH, Wanderer AA, Kolodner RD (2001) Mutation of a new gene encoding a putative pyrin-like protein causes familial cold autoinflammatory syndrome and Muckle-Wells syndrome. Nat Genet 29:301–305. https://doi.org/10.1038/ng756
Hoshino K, Tsutsui H, Kawai T, Takeda K, Nakanishi K, Takeda Y, Akira S (1999) Cutting edge: generation of IL-18 receptor-deficient mice: evidence for IL-1 receptor-related protein as an essential IL-18 binding receptor. J Immunol 162:5041–5044
Hosotani Y et al (2008) Interleukin-18 prevents apoptosis via PI3K/Akt pathway in normal human keratinocytes. J Dermatol 35:514–524. https://doi.org/10.1111/j.1346-8138.2008.00513.x
Huang WX, Huang P, Hillert J (2004) Increased expression of caspase-1 and interleukin-18 in peripheral blood mononuclear cells in patients with multiple sclerosis. Mult Scler 10:482–487. https://doi.org/10.1191/1352458504ms1071oa
Jablonska E, Ratajczak W, Jablonski J (2008) Role of the p38 MAPK pathway in induction of iNOS expression in human leukocytes. Folia Biol 56:83–89
Jacobs SR, Damania B (2012) NLRs, inflammasomes, and viral infection. J Leukoc Biol 92:469–477. https://doi.org/10.1189/jlb.0312132
Jander S, Stoll G (1998) Differential induction of interleukin-12, interleukin-18, and interleukin-1beta converting enzyme mRNA in experimental autoimmune encephalomyelitis of the Lewis rat. J Neuroimmunol 91:93–99
Jeon GS, Park SK, Park SW, Kim DW, Chung CK, Cho SS (2008) Glial expression of interleukin-18 and its receptor after excitotoxic damage in the mouse hippocampus. Neurochem Res 33:179–184. https://doi.org/10.1007/s11064-007-9434-6
Joosten LA et al (2000) An IFN-gamma-independent proinflammatory role of IL-18 in murine streptococcal cell wall arthritis. J Immunol 165:6553–6558. https://doi.org/10.4049/jimmunol.165.11.6553
Kalina U et al (2000) IL-18 activates STAT3 in the natural killer cell line 92, augments cytotoxic activity, and mediates IFN-gamma production by the stress kinase p38 and by the extracellular regulated kinases p44erk-1 and p42erk-21. J Immunol 165:1307–1313. https://doi.org/10.4049/jimmunol.165.3.1307
Kandasamy K et al (2010) NetPath: a public resource of curated signal transduction pathways. Genome Biol 11:R3. https://doi.org/10.1186/gb-2010-11-1-r3
Kang MJ et al (2007) IL-18 is induced and IL-18 receptor alpha plays a critical role in the pathogenesis of cigarette smoke-induced pulmonary emphysema and inflammation. J Immunol 178:1948–1959 doi:178/3/1948 [pii] 684049/jimmunol.178.3.1948
Kim SH, Eisenstein M, Reznikov L, Fantuzzi G, Novick D, Rubinstein M, Dinarello CA (2000) Structural requirements of six naturally occurring isoforms of the IL-18 binding protein to inhibit IL-18. Proc Natl Acad Sci USA 97:1190–1195. https://doi.org/10.1073/pnas.97.3.1190
Kim SH et al (2001) Functional reconstitution and regulation of IL-18 activity by the IL-18R beta chain. J Immunol 166:148–154
Kohka H et al (1998) Interleukin-18/interferon-gamma-inducing factor, a novel cytokine, up-regulates ICAM-1 (CD54) expression in KG-1 cells. J Leukoc Biol 64:519–527. https://doi.org/10.1002/jlb.64.4.519
Kojima H et al (1998) Interleukin-18 activates the IRAK-TRAF6 pathway in mouse EL-4 cells. Biochem Biophys Res Commun 244:183–186. https://doi.org/10.1006/bbrc.1998.8236
Kroeger KM, Sullivan BM, Locksley RM (2009) IL-18 and IL-33 elicit Th2 cytokines from basophils via a MyD88- and p38alpha-dependent pathway. J Leukoc Biol 86:769–778. https://doi.org/10.1189/jlb.0708452
Lauw FN, Branger J, Florquin S, Speelman P, van Deventer SJ, Akira S, van der Poll T (2002) IL-18 improves the early antimicrobial host response to pneumococcal pneumonia. J Immunol 168:372–378. https://doi.org/10.4049/jimmunol.168.1.372
Lee JH, Cho DH, Park HJ (2015) IL-18 and cutaneous inflammatory diseases. Int J Mol Sci 16:29357–29369. https://doi.org/10.3390/ijms161226172
Lee JK, Kim SH, Lewis EC, Azam T, Reznikov LL, Dinarello CA (2004) Differences in signaling pathways by IL-1beta and IL-18. Proc Natl Acad Sci USA 101:8815–8820. https://doi.org/10.1073/pnas.0402800101
Leyfer D et al (2004) Cis-element clustering correlates with dose-dependent pro- and antisignaling effects of IL18. Genes Immun 5:354–362. https://doi.org/10.1038/sj.gene.6364099
Liao TL et al (2017) Upregulation of circulating microRNA-134 in adult-onset Still’s disease and its use as potential biomarker. Sci Rep 7:4214. https://doi.org/10.1038/s41598-017-04086-w
Liew FY, Wei XQ, McInnes IB (2003) Role of interleukin 18 in rheumatoid arthritis. Ann Rheum Dis 62(Suppl 2):ii48–ii50. https://doi.org/10.1136/ard.62.suppl_2.ii48
Lindegaard B et al (2013) Interleukin-18 activates skeletal muscle AMPK and reduces weight gain and insulin resistance in mice. Diabetes 62:3064–3074. https://doi.org/10.2337/db12-1095
Matsui K et al (1997) Propionibacterium acnes treatment diminishes CD4+ NK1.1+ T cells but induces type I T cells in the liver by induction of IL-12 and IL-18 production from Kupffer cells. J Immunol 159:97–106
McInnes IB, Gracie JA, Leung BP, Wei XQ, Liew FY (2000) Interleukin 18: a pleiotropic participant in chronic inflammation. Immunol Today 21:312–315
Michels M et al (2015) Normal free interleukin-18 (IL-18) plasma levels in dengue virus infection and the need to measure both total IL-18 and IL-18 binding protein levels. Clin Vaccine Immunol 22:650–655. https://doi.org/10.1128/CVI.00147-15
Miyoshi K, Obata K, Kondo T, Okamura H, Noguchi K (2008) Interleukin-18-mediated microglia/astrocyte interaction in the spinal cord enhances neuropathic pain processing after nerve injury. J Neurosci 28:12775–12787. https://doi.org/10.1523/JNEUROSCI.3512-08.2008
Morel JC, Park CC, Zhu K, Kumar P, Ruth JH, Koch AE (2002) Signal transduction pathways involved in rheumatoid arthritis synovial fibroblast interleukin-18-induced vascular cell adhesion molecule-1 expression. J Biol Chem 277:34679–34691. https://doi.org/10.1074/jbc.M206337200
Motta M, Imbesi R, Di Rosa M, Stivala F, Malaguarnera L (2007) Altered plasma cytokine levels in Alzheimer’s disease: correlation with the disease progression. Immunol Lett 114:46–51. 891016/j.imlet.2007.09.002
Murphy AJ et al (2016) IL-18 production from the NLRP1 inflammasome prevents obesity and metabolic syndrome. Cell Metab 23:155–164. https://doi.org/10.1016/j.cmet.2015.09.024
Nakajima T, Owen CA (2012) Interleukin-18: the master regulator driving destructive and remodeling processes in the lungs of patients with chronic obstructive pulmonary disease? Am J Respir Crit Care Med 185:1137–1139. https://doi.org/10.1164/rccm.201204-0590ED
Nakamura K, Okamura H, Wada M, Nagata K, Tamura T (1989) Endotoxin-induced serum factor that stimulates gamma interferon production. Infect Immun 57:590–595
Nakamura S, Otani T, Okura R, Ijiri Y, Motoda R, Kurimoto M, Orita K (2000) Expression and responsiveness of human interleukin-18 receptor (IL-18R) on hematopoietic cell lines. Leukemia 14:1052–1059. https://doi.org/10.1038/sj.leu.2401789
Nakanishi K (2018) Unique action of Interleukin-18 on T cells and other immune cells. Front Immunol 9:763. https://doi.org/10.3389/fimmu.2018.00763
Nakanishi K, Yoshimoto T, Tsutsui H, Okamura H (2001a) Interleukin-18 is a unique cytokine that stimulates both Th1 and Th2 responses depending on its cytokine milieu. Cytokine Growth Factor Rev 12:53–72. https://doi.org/10.1016/s1359-6101(00)00015-0
Nakanishi K, Yoshimoto T, Tsutsui H, Okamura H (2001b) Interleukin-18 regulates both Th1 and Th2 responses. Annu Rev Immunol 19:423–474. https://doi.org/10.1146/annurev.immunol.19.1.423
Netea MG et al (2006) Deficiency of interleukin-18 in mice leads to hyperphagia, obesity and insulin resistance. Nat Med 12:650–656. https://doi.org/10.1038/nm1415
Nicoletti F et al (2001) Increased serum levels of interleukin-18 in patients with multiple sclerosis. Neurology 57:342–344
Nold-Petry CA et al (2015) IL-37 requires the receptors IL-18Ralpha and IL-1R8 (SIGIRR) to carry out its multifaceted anti-inflammatory program upon innate signal transduction. Nat Immunol 16:354–365. https://doi.org/10.1038/ni.3103
Novick D, Kim SH, Fantuzzi G, Reznikov LL, Dinarello CA, Rubinstein M (1999) Interleukin-18 binding protein: a novel modulator of the Th1 cytokine response. Immunity 10:127–136
Nowarski R et al (2015) Epithelial IL-18 equilibrium controls barrier function in colitis. Cell 163:1444–1456. https://doi.org/10.1016/j.cell.2015.10.072
Ohnishi H et al (2012) TRAM is involved in IL-18 signaling and functions as a sorting adaptor for MyD88. PloS One 7:e38423. https://doi.org/10.1371/journal.pone.0038423
Ojala J, Alafuzoff I, Herukka SK, van Groen T, Tanila H, Pirttila T (2009) Expression of interleukin-18 is increased in the brains of Alzheimer’s disease patients. Neurobiol Aging 30:198–209 1051016/j.neurobiolaging.2007.06.006
Okamura H, Tsutsui H, Kashiwamura S, Yoshimoto T, Nakanishi K (1998) Interleukin-18: a novel cytokine that augments both innate and acquired immunity. Adv Immunol 70:281–312
Olee T, Hashimoto S, Quach J, Lotz M (1999) IL-18 is produced by articular chondrocytes and induces proinflammatory and catabolic responses. J Immunol 162:1096–1100
Omoto Y et al (2006) Human mast cell chymase cleaves pro-IL-18 and generates a novel and biologically active IL-18 fragment. J Immunol 177:8315–8319. https://doi.org/10.4049/jimmunol.177.12.8315
Omoto Y et al. (2010) Granzyme B is a novel interleukin-18 converting enzyme J Dermatol Sci 59:129–135. https://doi.org/10.1016/j.jdermsci.2010.05.004
Pinto SM et al (2018) A network map of IL-33 signaling pathway. J Cell Commun Signal 12:615–624. https://doi.org/10.1007/s12079-018-0464-4
Reddy VS et al (2008) Interleukin-18 stimulates fibronectin expression in primary human cardiac fibroblasts via PI3K-Akt-dependent NF-kappaB activation. J Cell Physiol 215:697–707. https://doi.org/10.1002/jcp.21348
Reddy VS et al (2010) Interleukin-18 induces EMMPRIN expression in primary cardiomyocytes via JNK/Sp1 signaling and MMP-9 in part via EMMPRIN and through AP-1 and NF-kappaB activation. Am J Physiol Heart Circ Physiol 299:H1242–H1254. https://doi.org/10.1152/ajpheart.00451.2010
Reddy VS, Valente AJ, Delafontaine P, Chandrasekar B (2011) Interleukin-18/WNT1-inducible signaling pathway protein-1 signaling mediates human saphenous vein smooth muscle cell proliferation. J Cell Physiol 226:3303–3315. https://doi.org/10.1002/jcp.22676
Rodriguez-Menocal L et al (2014) Macrophage-derived IL-18 and increased fibrinogen deposition are age-related inflammatory signatures of vascular remodeling. Am J Physiol Heart Circ Physiol 306:H641–H653. https://doi.org/10.1152/ajpheart.00641.2013
Sanders NL, Mishra A (2016) Role of interleukin-18 in the pathophysiology of allergic diseases. Cytokine Growth Factor Rev 32:31–39. https://doi.org/10.1016/j.cytogfr.2016.07.001
Sareneva T, Julkunen I, Matikainen S (2000) IFN-alpha and IL-12 induce IL-18 receptor gene expression in human NK and T cells. J Immunol 165:1933–1938. https://doi.org/10.4049/jimmunol.165.4.1933
Sharma A, Chakraborti A, Das A, Dhiman RK, Chawla Y (2009) Elevation of interleukin-18 in chronic hepatitis C: implications for hepatitis C virus pathogenesis. Immunology 128:e514–e522. https://doi.org/10.1111/j.1365-2567.2008.03021.x
Smyth MJ et al (2004) NKG2D recognition and perforin effector function mediate effective cytokine immunotherapy of cancer. J Exp Med 200:1325–1335. https://doi.org/10.1084/jem.20041522
Subbannayya Y, Anuja K, Advani J, Ojha UK, Nanjappa V, George B, Sonawane A, Kumar RV, Ramaswamy G, Pandey A, Somani BL, Raju R (2014) A network map of the gastrin signaling pathway. J Cell Commun Signal 8:165–170. https://doi.org/10.1007/s12079-014-0224-z
Sugawara S et al (2001) Neutrophil proteinase 3-mediated induction of bioactive IL-18 secretion by human oral epithelial cells. J Immunol 167:6568–6575. https://doi.org/10.4049/jimmunol.167.11.6568
Suzuki N et al (2003) IL-1 receptor-associated kinase 4 is essential for IL-18-mediated NK and Th1 cell responses. J Immunol 170:4031–4035. https://doi.org/10.4049/jimmunol.170.8.4031
Takeda N et al (2003) Bcl6 is a transcriptional repressor for the IL-18 gene. J Immunol 171:426–431. https://doi.org/10.4049/jimmunol.171.1.426
Takeuchi M, Nishizaki Y, Sano O, Ohta T, Ikeda M, Kurimoto M (1997) Immunohistochemical and immuno-electron-microscopic detection of interferon-gamma-inducing factor (“interleukin-18”) in mouse intestinal epithelial cells. Cell Tissue Res 289:499–503. https://doi.org/10.1007/s004410050895
Terada M et al (2006) Contribution of IL-18 to atopic-dermatitis-like skin inflammation induced by Staphylococcus aureus product in mice. Proc Natl Acad Sci USA 103:8816–8821 1241073/pnas.0602900103
Torigoe K et al (1997) Purification and characterization of the human interleukin-18 receptor. J Biol Chem 272:25737–25742. https://doi.org/10.1074/jbc.272.41.25737
Tsutsui H et al (1999) Caspase-1-independent, Fas/Fas ligand-mediated IL-18 secretion from macrophages causes acute liver injury in mice. Immunity 11:359–367. https://doi.org/10.1016/s1074-7613(00)80111-9
Tsutsui H et al (1997) IL-18 accounts for both TNF-alpha- and Fas ligand-mediated hepatotoxic pathways in endotoxin-induced liver injury in mice. J Immunol 159:3961–3967
Tsutsumi N et al (2014) The structural basis for receptor recognition of human interleukin-18. Nat Commun 5:5340. https://doi.org/10.1038/ncomms6340
van Iersel MP, Kelder T, Pico AR, Hanspers K, Coort S, Conklin BR, Evelo C (2008) Presenting and exploring biological pathways with PathVisio. BMC Bioinformatics 9:–399. https://doi.org/10.1186/1471-2105-9-399, Presenting and exploring biological pathways with PathVisio 130–2105–9-399 [pii]
Venkatesan B, Valente AJ, Reddy VS, Siwik DA, Chandrasekar B (2009) Resveratrol blocks interleukin-18-EMMPRIN cross-regulation and smooth muscle cell migration. Am J Physiol Heart Circ Physiol 297:H874–H886. https://doi.org/10.1152/ajpheart.00311.2009
Volin MV, Koch AE (2011) Interleukin-18: a mediator of inflammation and angiogenesis in rheumatoid arthritis. J Interferon Cytokine Res 31:745–751. https://doi.org/10.1089/jir.2011.0050
Wang N, Sugama S, Conti B, Teramoto A, Shibasaki T (2006) Interleukin-18 mRNA expression in the rat pituitary gland. J Neuroimmunol 173:117–125. 1351016/j.jneuroim.2005.12.009
Wawrocki S, Druszczynska M, Kowalewicz-Kulbat M, Rudnicka W (2016) Interleukin 18 (IL-18) as a target for immune intervention. Acta Biochim Pol 63:59–63. https://doi.org/10.18388/abp.2015_1153
Wawrocki S, Kielnierowski G, Rudnicka W, Druszczynska M (2019) Lack of significant effect of interleukin-18 gene variants on tuberculosis susceptibility in the Polish population. Acta Biochim Pol. https://doi.org/10.18388/abp.2019_2797
Wheeler RD, Culhane AC, Hall MD, Pickering-Brown S, Rothwell NJ, Luheshi GN (2000) Detection of the interleukin 18 family in rat brain by RT-PCR. Mol Brain Res 77:290–293
Wildbaum G, Youssef S, Grabie N, Karin N (1998) Neutralizing antibodies to IFN-gamma-inducing factor prevent experimental autoimmune encephalomyelitis. J Immunol 161:6368–6374
Xu MH, Yuan FL, Wang SJ, Xu HY, Li CW, Tong X (2017) Association of interleukin-18 and asthma. Inflammation 40:324–327. https://doi.org/10.1007/s10753-016-0467-3
Yasin S et al (2019) IL-18 as a biomarker linking systemic juvenile idiopathic arthritis and macrophage activation syndrome. Rheumatology (Oxford). https://doi.org/10.1093/rheumatology/kez282
Yoo JK, Kwon H, Khil LY, Zhang L, Jun HS, Yoon JW (2005) IL-18 induces monocyte chemotactic protein-1 production in macrophages through the phosphatidylinositol 3-kinase/Akt and MEK/ERK1/2 pathways. J Immunol 175:8280–8286. https://doi.org/10.4049/jimmunol.175.12.8280
Yoshimoto T et al (1998) IL-12 up-regulates IL-18 receptor expression on T cells, Th1 cells, and B cells: synergism with IL-18 for IFN-gamma production. J Immunol 161:3400–3407
Yoshimoto T et al (1999) IL-18, although antiallergic when administered with IL-12, stimulates IL-4 and histamine release by basophils. Proc Natl Acad Sci USA 96:13962–13966. https://doi.org/10.1073/pnas.96.24.13962
Yu S, Chen Z, Mix E, Zhu SW, Winblad B, Ljunggren HG, Zhu J (2002) Neutralizing antibodies to IL-18 ameliorate experimental autoimmune neuritis by counter-regulation of autoreactive Th1 responses to peripheral myelin antigen. J Neuropathol Exp Neurol 61:614–622. https://doi.org/10.1093/jnen/61.7.614
Zabalgoitia M et al (2008) Carbon monoxide donors or heme oxygenase-1 (HO-1) overexpression blocks interleukin-18-mediated NF-kappaB-PTEN-dependent human cardiac endothelial cell death. Free Radic Biol Med 44:284–298. https://doi.org/10.1016/j.freeradbiomed.2007.08.012
Zhang H, Hile KL, Asanuma H, Vanderbrink B, Franke EI, Campbell MT, Meldrum KK (2011) IL-18 mediates proapoptotic signaling in renal tubular cells through a Fas ligand-dependent mechanism. Am J Physiol Renal Physiol 301:F171–F178. https://doi.org/10.1152/ajprenal.00339.2010
Zhang XY et al (2016) Serum IL-18 level, clinical symptoms and IL-18-607A/C polymorphism among chronic patients with schizophrenia in a Chinese Han population. Psychoneuroendocrinology 68:140–147. https://doi.org/10.1016/j.psyneuen.2016.03.002
Zhou J, Shang J, Song J, Ping F (2013) Interleukin-18 augments growth ability of primary human melanocytes by PTEN inactivation through the AKT/NF-kappaB pathway. Int J Biochem Cell Biol 45:308–316. https://doi.org/10.1016/j.biocel.2012.11.008
Zitvogel L, Kepp O, Galluzzi L, Kroemer G (2012) Inflammasomes in carcinogenesis and anticancer immune responses. Nat Immunol 13:343–351. https://doi.org/10.1038/ni.2224
Zorrilla EP, Sanchez-Alavez M, Sugama S, Brennan M, Fernandez R, Bartfai T, Conti B (2007) Interleukin-18 controls energy homeostasis by suppressing appetite and feed efficiency. Proc Natl Acad Sci USA 104:11097–11102. https://doi.org/10.1073/pnas.0611523104
Acknowledgments
We thank Karnataka Biotechnology and Information Technology Services (KBITS), Government of Karnataka, for the support to Center for Systems Biology and Molecular Medicine at Yenepoya (Deemed to be University) under the Biotechnology Skill Enhancement Programme in Multiomics Technology (BiSEP GO ITD 02 MDA 2017). RDAB is a recipient of the Senior Research Fellowship from the Indian Council of Medical Research (ICMR), Government of India. SMP is a recipient of the INSPIRE Faculty Award from the Department of Science and Technology (DST), Government of India.
Author information
Authors and Affiliations
Corresponding authors
Ethics declarations
Conflict of interest
The authors report no conflicts of interest.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Electronic supplementary material
Rights and permissions
About this article
Cite this article
Rex, D., Agarwal, N., Prasad, T.S.K. et al. A comprehensive pathway map of IL-18-mediated signalling. J. Cell Commun. Signal. 14, 257–266 (2020). https://doi.org/10.1007/s12079-019-00544-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12079-019-00544-4