Skip to main content
Log in

Extracellular matrix regulation of fibroblast function: redefining our perspective on skin aging

  • Review
  • Published:
Journal of Cell Communication and Signaling Aims and scope

Abstract

The dermal extracellular matrix (ECM) comprises the bulk of skin and confers strength and resiliency. In young skin, fibroblasts produce and adhere to the dermal ECM, which is composed primarily of type I collagen fibrils. Adherence allows fibroblasts to spread and exert mechanical force on the surrounding ECM. In this state, fibroblasts display a “youthful” phenotype characterized by maintenance of the composition and structural organization of the dermal ECM. During aging, fibroblast-ECM interactions become disrupted due to fragmentation of collagen fibrils. This disruption causes loss of fibroblast spreading and mechanical force, which inextricably lead to an “aged” phenotype; fibroblasts synthesize less ECM proteins and more matrix-degrading metalloproteinases. This imbalance of ECM homeostasis further drives collagen fibril fragmentation in a self-perpetuating cycle. This article summarizes age-related changes in the dermal ECM and the mechanisms by which these changes alter the interplay between fibroblasts and their extracellular matrix microenvironment that drive the aging process in human skin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

UV:

ultraviolet

ECM:

extracellular matrix

GAG:

glycoseaminoglycan

PG:

prostaglandin

Lys:

lysine

Hyl:

hydroxylysine

LOX:

lysyl oxidase

MMP:

matrix metalloprotease

ROS:

reactive oxygen species

PTP:

protein tyrosine phosphatase

RTK:

receptor tyrosine kinase

MAPK:

mitogen activated protein kinase

ERK:

extracellular signal-regulated kinase

JNK:

c-Jun N-terminal kinase

AP-1:

activated protein 1

CCN1:

cysteine-rich protein 61

TNF- α:

tumor necrosis factor alpha

TGF- β:

transforming growth factor beta

GzmB:

granzyme B

AADM:

age-associated dermal microenvironment

IGFBP:

insulin-like growth factor binding protein

VWC:

von Willebrand factor type C

TSP1:

thrombospondin type 1

References

  • Ågren MS, Schnabel R, Christensen LH, Mirastschijski U (2015) Tumor necrosis factor-α-accelerated degradation of type I collagen in human skin is associated with elevated matrix metalloproteinase (MMP)-1 and MMP-3 ex vivo. Eur J Cell Biol 94:12–21

    Article  PubMed  PubMed Central  Google Scholar 

  • Ahmed T, Nash A, Clark KEN, Ghibaudo M, de Leeuw NH, Potter A, Stratton R, Birch HL, Casse RE, Bozec L (2017) Combining nano-physical and computational investigations to understand the nature of “aging” in dermal collagen. Int J Nanomedicine 12:3303–3314

    Article  PubMed  PubMed Central  Google Scholar 

  • Bashir MM, Sharma MR, Werth VP (2009) TNF-α production in the skin. Arch Dermatol Res 301:87–91

    Article  CAS  PubMed  Google Scholar 

  • Bork P (1993) The modular architecture of a new family of growth-regulators related to connective-tissue growth-factor. FEBS Lett 327:125–130

    Article  CAS  PubMed  Google Scholar 

  • Braun-Falco O, Rupec M (1964) Some observations on dermal collagen fibrils in ultra-thin sections. J Invest Dermatol 42:15–19

    Article  CAS  PubMed  Google Scholar 

  • Brennan M, Bhatti H, Nerusu KC, Bhagavathula N, Kang SW, Fisher GJ, Varani J, Voorhees JJ (2003) Matrix metalloproteinase-1 is the major collagenolytic enzyme responsible for collagen damage in UV-irradiated human skin. Photochem Photobiol 78:43–48

    Article  CAS  PubMed  Google Scholar 

  • Brownaugsburger P, Tisdale C, Broekelmann T, Sloan C, Mecham RP (1995) Identification of an elastin cross-linking domain that joins 3 peptide chains - possible role in nucleated assembly. J Biol Chem 270:17778–17783

    Article  CAS  Google Scholar 

  • Burridge K, Chrzanowska-Wodnicka M (1996) Focal adhesions, contractility, and signaling. Annu Rev Cell Dev Biol 12:463–518

    Article  CAS  PubMed  Google Scholar 

  • Carrino DA, Calabro A, Darr AB, Dours-Zimmermann MT, Sandy JD, Zimmermann DR, Sorrell JM, Hascall VC, Caplan AI (2011) Age-related differences in human skin proteoglycans. Glycobiology 21:257–268

    Article  CAS  PubMed  Google Scholar 

  • Chen CC, Lau LF (2009) Functions and mechanisms of action of CCN matricellular proteins. Int J Biochem Cell Biol 41:771–783

    Article  CAS  PubMed  Google Scholar 

  • Culav EM, Clark CH, Merrilees MJ (1999) Connective tissues: matrix composition and its relevance to physical therapy. Phys Ther 79:308–319

    CAS  PubMed  Google Scholar 

  • Evans MD, Dizdaroglu M, Cooke MS (2004) Oxidative DNA damage and disease: induction, repair and significance. Mutat Res 567:1–61

    Article  CAS  PubMed  Google Scholar 

  • Exposito JY, Valcourt U, Cluzel C, Lethias C (2010) The fibrillar collagen family. Int J Mol Sci 11:407–426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fang M, Goldstein EL, Turner AS, Les CM, Orr BG, Fisher GJ, Welch KB, Rothman ED, Holl MMB (2012) Type I collagen D-spacing in fibril bundles of dermis, tendon, and bone: bridging between nano- and micro-level tissue hierarchy. ACS Nano 6:9503–9514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fisher GJ, Datta SC, Talwar HS, Wang ZQ, Varani J, Kang S, Voorhees JJ (1996) Molecular basis of sun-induced premature skin ageing and retinoid antagonism. Nature 379:335–339

    Article  CAS  PubMed  Google Scholar 

  • Fisher GJ, Kang SW, Varani J, Bata-Csorgo Z, Wan YS, Datta S, Voorhees JJ (2002) Mechanisms of photoaging and chronological skin aging. Arch Dermatol 138:1462–1470

    Article  CAS  PubMed  Google Scholar 

  • Fisher GJ, Varani J, Voorhees JJ (2008). Looking older: fibroblast collapse and therapeutic implications. Arch Dermatol 144:666–672

  • Fisher GJ, Quan T, Purohit T, Shao Y, Cho MK, He T, Varani J, Kang S, Voorhees JJ (2009) Collagen fragmentation promotes oxidative stress and elevates matrix metalloproteinase-1 in fibroblasts in aged human skin. Am J Pathol 174:101–114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gautieri A, Passini FS, Silvan U, Guizar-Sicairos M, Carimati G, Volpi P, Moretti M, Schoenhuber H, Redaelli A, Berli M, Snedeker JG (2017) Advanced glycation end-products: mechanics of aged collagen from molecule to tissue. Matrix Biol 59:95–108

    Article  CAS  PubMed  Google Scholar 

  • Geng Y, McQuillan D, Roughley PJ (2006) Slrp interaction can protect collagen fibrils from cleavage by collagenases. Matrix Biol 25:484–491

    Article  CAS  PubMed  Google Scholar 

  • Gosline J, Lillie M, Carrington E, Guerette P, Ortlepp C, Savage K (2002) Elastic proteins: biological roles and mechanical properties. Philos Trans R Soc Lond Ser B Biol Sci 357:121–132

    Article  CAS  Google Scholar 

  • Griffiths CEM, Russman AN, Majmudar G, Singer RS, Hamilton TA, Voorhees JJ (1993) Restoration of collagen formation in photodamaged human skin by tretinoin (retinoic acid). N Engl J Med 329:530–535

    Article  CAS  PubMed  Google Scholar 

  • Harman D (1981) The aging process. Proc Natl Acad Sci U S A 78:7124–7128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harman D (1992) Free-radical theory of aging. Mutat Res 275:257–266

    Article  CAS  PubMed  Google Scholar 

  • Heino J (2007) The collagen family members as cell adhesion proteins. BioEssays 29:1001–1010

    Article  CAS  PubMed  Google Scholar 

  • Herchenhan A, Uhlenbrock F, Eliasson P, Weis M, Eyre D, Kadler KE, Magnusson SP, Kjaer M (2015) Lysyl oxidase activity is required for ordered collagen fibrillogenesis by tendon cells. J Biol Chem 290:16440–16450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu LZ, Mauro TM, Dang EL, Man G, Zhang J, Lee DL, Wang G, Feingold KR, Elias PM, Man MQ (2017) Epidermal dysfunction leads to an age-associated increase in levels of serum inflammatory cytokines. J Invest Dermatol 137:1277–1285

    Article  CAS  PubMed  Google Scholar 

  • Hynes RO, Naba A (2012) Overview of the matrisome – an inventory of extracellular matrix constituents and functions. Cold Spring Harb Perspect Biol 4:a004903

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim C, Ryu H-C, Kim J-H (2010) Low-dose UVB irradiation stimulates matrix metalloproteinase-1 expression via a BLT2-linked pathway in HaCaT cells. Exp Mol Med 42:833–841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim SH, Turnbull J, Guimond S (2011) Extracellular matrix and cell signalling: the dynamic cooperation of integrin, proteoglycan and growth factor receptor. J Endocrinol 209:139–151

    Article  CAS  PubMed  Google Scholar 

  • Lau LF, Lam SCT (1999) The CCN family of angiogenic regulators: the integrin connection. Exp Cell Res 248:44–57

    Article  CAS  PubMed  Google Scholar 

  • Leask A, Abraham DJ (2003) The role of connective tissue growth factor, a multifunctional matricellular protein, in fibroblast biology. Biochem Cell Biol 81:355–363

    Article  CAS  PubMed  Google Scholar 

  • Leask A, Abraham DJ (2006) All in the ccn family: essential matricellular signaling modulators emerge from the bunker. J Cell Sci 119:4803–4810

    Article  CAS  PubMed  Google Scholar 

  • Lee DH, Oh J-H, Chung JH (2016) Glycosaminoglycan and proteoglycan in skin aging. J Dermatol Sci 83:174–181

    Article  CAS  PubMed  Google Scholar 

  • Liu XQ, Zhao Y, Gao JG, Pawlyk B, Starcher B, Spencer JA, Yanagisawa H, Zuo J, Li TS (2004) Elastic fiber homeostasis requires lysyl oxidase-like 1 protein. Nature Genet 36:178–182

    Article  CAS  PubMed  Google Scholar 

  • Longas MO, Russell CS, He X-Y (1986) Chemical alterations of hyaluronic acid and dermatan sulfate detected in aging human skin by infrared spectroscopy. Biochim Biophys Acta 884:265–269

    Article  CAS  PubMed  Google Scholar 

  • Lovell CR, Smolenski KA, Duance VC, Light ND, Young S, Dyson M (1987) Type I and III collagen content and fibre distribution in normal human skin during ageing. Br J Dermatol 117:419–428

    Article  CAS  PubMed  Google Scholar 

  • Meigel WN, Gay S, Weber L (1977) Dermal architecture and collagen type distribution. Arch Dermatol Res 259:1–10

    Article  CAS  PubMed  Google Scholar 

  • Mitchell RE (1967) Chronic solar dermatosis: a light and electron microscopic study of the dermis. J Invest Dermatol 48:203–220

    Article  CAS  PubMed  Google Scholar 

  • Montagna W, Carlisle K (1979) Structural changes in aging human skin. J Invest Dermatol 73:47–53

    Article  CAS  PubMed  Google Scholar 

  • Naba A, Clauser KR, Hoersch S, Liu H, Carr SA, Hynes RO (2012) The matrisome: in silico definition and in vivo characterization by proteomics of normal and tumor extracellular matrices. Mol Cell Proteomics 11:M111.014647

    Article  PubMed  Google Scholar 

  • Naba A, Clauser KR, Ding H, Whittaker CA, Carr SA, Hynes RO (2016) The extracellular matrix: tools and insights for the "omics" era. Matrix Biol 49:10–24

    Article  CAS  PubMed  Google Scholar 

  • Nissinen LM, Kahari VM (2015) Collagen turnover in wound repair-a macrophage connection. J Invest Dermatol 135:2350–2352

    Article  CAS  PubMed  Google Scholar 

  • Parkinson LG, Toro A, Zhao HY, Brown K, Tebbutt SJ, Granville DJ (2015) Granzyme B mediates both direct and indirect cleavage of extracellular matrix in skin after chronic low-dose ultraviolet light irradiation. Aging Cell 14:67–77

    Article  CAS  PubMed  Google Scholar 

  • Pasquali-Ronchetti I, Baccarani-Contri M (1997) Elastic fiber during development and aging. Microsc Res Tech 38:428–435

    Article  CAS  PubMed  Google Scholar 

  • Perbal B (2004) CCN proteins: multifunctional signalling regulators. Lancet 363:62–64

    Article  CAS  PubMed  Google Scholar 

  • Pilcher BK, Dumin JA, Sudbeck BD, Krane SM, Welgus HG, Parks WC (1997) The activity of collagenase-1 is required for keratinocyte migration on a type I collagen matrix. J Cell Biol 137:1445–1457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poljsak B, Milisav I (2012) The neglected significance of "antioxidative stress". Oxidative Med Cell Longev Article ID 480895:12

    Google Scholar 

  • Qin ZP, Fisher GJ, Quan TH (2013) Cysteine-rich protein 61 (CCN1) domain-specific stimulation of matrix metalloproteinase-1 expression through alpha V beta 3 integrin in human skin fibroblasts. J Biol Chem 288:12386–12394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qin ZP, Robichaud P, He TY, Fisher GJ, Voorhees JJ, Quan TH (2014) Oxidant exposure induces cysteine-rich protein 61 (CCN1) via c-jun/ap-1 to reduce collagen expression in human dermal fibroblasts. PLoS One 9:e115402

    Article  PubMed  PubMed Central  Google Scholar 

  • Quan TH, He TY, Voorhees JJ, Fisher GJ (2005) Ultraviolet irradiation induces Smad7 via induction of transcription factor AP-1 in human skin fibroblasts. J Biol Chem 280:8079–8085

    Article  CAS  PubMed  Google Scholar 

  • Quan TH, He TY, Shao Y, Lin L, Kang SW, Voorhees JJ, Fisher GJ (2006) Elevated cysteine-rich 61 mediates aberrant collagen homeostasis in chronologically aged and photoaged human skin. Am J Pathol 169:482–490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quan TH, Shao Y, He TY, Voorhees JJ, Fisher GJ (2010) Reduced expression of connective tissue growth factor (CTGF/CCN2) mediates collagen loss in chronologically aged human skin. J Invest Dermatol 130:415–424

    Article  CAS  PubMed  Google Scholar 

  • Quan TH, Qin ZP, Robichaud P, Voorhees JJ, Fisher GJ (2011a) CCN1 contributes to skin connective tissue aging by inducing age-associated secretory phenotype in human skin dermal fibroblasts. J Cell Commun Signal 5:201–207

    Article  PubMed  PubMed Central  Google Scholar 

  • Quan TH, Qin ZP, Shao Y, Xu YR, Voorhees JJ, Fisher GJ (2011b) Retinoids suppress cysteine-rich protein 61 (CCN1), a negative regulator of collagen homeostasis, in skin equivalent cultures and aged human skin in vivo. Exp Dermatol 20:572–576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quan T, Qin Z, Voorhees JJ, Fisher GJ (2012) Cysteine-rich protein 61 (CCN1) mediates replicative senescence-associated aberrant collagen homeostasis in human skin fibroblasts. J Cell Biochem 113:3011–3018

    Article  CAS  PubMed  Google Scholar 

  • Quan T, Little E, Quan H, Qin Z, Voorhees JJ, Fisher GJ (2013a) Elevated matrix metalloproteinases and collagen fragmentation in photodamaged human skin: impact of altered extracellular matrix microenvironment on dermal fibroblast function. J Invest Dermatol 133:1362–1366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quan T, Wang F, Shao Y, Rittié L, Xia W, Orringer JS, Voorhees JJ, Fisher GJ (2013b) Enhancing structural support of the dermal microenvironment activates fibroblasts, endothelial cells, and keratinocytes in aged human skin in vivo. J Invest Dermatol 133:658–667

    Article  CAS  PubMed  Google Scholar 

  • Reihsner R, Melling M, Pfeiler W, Menzel E-J (2000) Alterations of biochemical and two-dimensional biomechanical properties of human skin in diabetes mellitus as compared to effects of in vitro non-enzymatic glycation. Clin Biomech 15:379–386

    Article  CAS  Google Scholar 

  • Ridley AJ, Schwartz MA, Burridge K, Firtel RA, Ginsberg MH, Borisy G, Parsons JT, Horwitz AR (2003) Cell migration: integrating signals from front to back. Science 302:1704–1709

    Article  CAS  PubMed  Google Scholar 

  • Rittié L, Fisher GJ (2002) UV-light-induced signal cascades and skin aging. Ageing Res Rev 1:705–720

    Article  PubMed  Google Scholar 

  • Rittié L, Fisher GJ (2015) Natural and sun-induced aging of human skin. Cold Spring Harb Perspect Med 5:a015370

    Article  PubMed  PubMed Central  Google Scholar 

  • Rosenbloom J, Abrams WR, Mecham R (1993) Extracellular matrix 4: the elastic fiber. FASEB J 7:1208–1218

    Article  CAS  PubMed  Google Scholar 

  • Sjerobabski-Masnec I, Situm M (2010) Skin aging. Acta Clin Croat 49:515–518

    PubMed  Google Scholar 

  • Szauter KM, Cao TY, Boyd CD, Csiszar K (2005) Lysyl oxidase in development, aging and pathologies of the skin. Pathol Biol 53:448–456

    Article  CAS  PubMed  Google Scholar 

  • Talwar HS, Griffiths CEM, Fisher GJ, Hamilton TA, Voorhees JJ (1995) Reduced type I and type III procollagens in photodamaged adult human skin. J Invest Dermatol 105:285–290

    Article  CAS  PubMed  Google Scholar 

  • Tanzer ML (1973) Cross-linking of collagen. Science 180:561–566

    Article  CAS  PubMed  Google Scholar 

  • Vandekerkhof PCM, Vanbergen B, Spruijt K, Kuiper JP (1994) Age-related-changes in wound-healing. Clin Exp Dermatol 19:369–374

    Article  CAS  Google Scholar 

  • Varani J, Warner RL, Gharaee-Kermani M, Phan SH, Kang SW, Chung JH, Wang ZQ, Datta SC, Fisher GJ, Voorhees JJ (2000) Vitamin a antagonizes decreased cell growth and elevated collagen-degrading matrix metalloproteinases and stimulates collagen accumulation in naturally aged human skin. J Invest Dermatol 114:480–486

    Article  CAS  PubMed  Google Scholar 

  • Varani J, Dame MK, Rittié L, Fligiel SEG, Kang S, Fisher GJ, Voorhees JJ (2006) Decreased collagen production in chronologically aged skin - roles of age-dependent alteration in fibroblast function and defective mechanical stimulation. Am J Pathol 168:1861–1868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verzijl N, DeGroot J, Thorpe SR, Bank RA, Shaw JN, Lyons TJ, Bijlsma JWJ, Lafeber F, Baynes JW, TeKoppele JM (2000) Effect of collagen turnover on the accumulation of advanced glycation end products. J Biol Chem 275:39027–39031

    Article  CAS  PubMed  Google Scholar 

  • Wang N, Ingber DE (1994) Control of cytoskeletal mechanics by extracellular matrix, cell shape, and mechanical tension. Biophys J 66:2181–2189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by funding from the National Institute of Health (grant R01-AG051849 and RO1-AG054835 to GJF and TQ and T32-AM07197 to MAC – PI: JT Elder).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary J. Fisher.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cole, M.A., Quan, T., Voorhees, J.J. et al. Extracellular matrix regulation of fibroblast function: redefining our perspective on skin aging. J. Cell Commun. Signal. 12, 35–43 (2018). https://doi.org/10.1007/s12079-018-0459-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12079-018-0459-1

Keywords

Navigation