Skip to main content
Log in

The role of the endoplasmic reticulum protein calreticulin in mediating TGF-β-stimulated extracellular matrix production in fibrotic disease

  • Review
  • Published:
Journal of Cell Communication and Signaling Aims and scope

Abstract

Endoplasmic reticulum (ER) stress is a key factor contributing to fibrotic disease. Although ER stress is a short-term adaptive response, with chronic stimulation, it can activate pathways leading to fibrosis. ER stress can induce TGF-β signaling, a central driver of extracellular matrix production in fibrosis. This review will discuss the role of an ER protein, calreticulin (CRT), which has both chaperone and calcium regulatory functions, in fibrosis. CRT expression is upregulated in multiple different fibrotic diseases. The roles of CRT in regulation of fibronectin extracellular matrix assembly, extracellular matrix transcription, and collagen secretion and processing into the extracellular matrix will be discussed. Evidence for the importance of CRT in ER calcium release and NFAT activation downstream of TGF-β signaling will be presented. Finally, we will summarize evidence from animal models in which CRT expression is genetically reduced or experimentally downregulated in targeted tissues of adult animals and discuss how these models define a key role for CRT in fibrotic diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

ATF4:

Activating transcription factor 4

ATF6:

Activating transcription factor 6

CHOP:

C/EBP homologous protein

CRT:

Calreticulin

ECM:

Extracellular matrix

EMT:

Epithelial to mesenchymal transition

ER:

Endoplasmic reticulum

ERp57:

Endoplasmic reticulum protein of 57 kDa

GADD34:

Growth arrest and DNA damage-inducible 34

GRP78:

Glucose regulated protein 78 kD

HSP47:

Heat shock protein 47 kD

IRE1:

Inositol-requiring protein 1

JNK:

c-jun N-terminal kinase

LRP1:

Low-density lipoprotein receptor-related protein 1

MAPK:

Mitogen-activated protein kinase

MDCK:

Madin-Darby canine kidney

MEFs:

Mouse embryonic fibroblasts

MEKK1:

Mitogen-activated protein kinase kinase kinase 1

NFAT:

Nuclear factor of activated T cells

ORP150:

150-kDa oxygen-regulated protein

4-PBA:

4-phenylbutyrate

PERK:

Protein kinase RNA (PKR)-like ER kinase

PI3K:

Phosphoinositide-3 kinase

Smad 2/3:

Mothers against decapentaplegic homologs 2/3

TGF-β:

Transforming growth factor beta

TSP-1:

Thrombospondin 1

TUDCA:

Tauroursodeoxycholic acid

UPR:

Unfolded protein response

UUO:

Unilateral ureteric obstruction

References

  • Alevizopoulos A, Dusserre Y, Ruegg U, Mermod N (1997) Regulation of the transforming growth factor beta-responsive transcription factor CTF-1 by calcineurin and calcium/calmodulin-dependent protein kinase IV. J Biol Chem 272:23597–23605

    Article  CAS  PubMed  Google Scholar 

  • Ayala P, Montenegro J, Vivar R, Letelier A, Urroz PA, Copaja M, Pivet D, Humeres C, Troncoso R, Vicencio JM, Lavandero S, Diaz-Araya G (2012) Attenuation of endoplasmic reticulum stress using the chemical chaperone 4-phenylbutyric acid prevents cardiac fibrosis induced by isoproterenol. Exp Mol Pathol 92:97–104

    Article  CAS  PubMed  Google Scholar 

  • Baek HA, Kim do S, Park HS, Jang KY, Kang MJ, Lee DG, Moon WS, Chae HJ, Chung MJ (2012) Involvement of endoplasmic reticulum stress in myofibroblastic differentiation of lung fibroblasts. Am J Respir Cell Mol Biol 46:731–739

    Article  CAS  PubMed  Google Scholar 

  • Baksh S, Michalak M (1991) Expression of calreticulin in Escherichia Coli and identification of its Ca2+ binding domains. J Biol Chem 266:21458–21465

    CAS  PubMed  Google Scholar 

  • Bandyopadhyay B, Fan J, Guan S, Li Y, Chen M, Woodley DT, Li W (2006) A "traffic control" role for TGFbeta3: orchestrating dermal and epidermal cell motility during wound healing. J Cell Biol 172:1093–1105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bertolotti A, Zhang Y, Hendershot LM, Harding HP, Ron D (2000) Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response. Nat Cell Biol 2:326–332

    Article  CAS  PubMed  Google Scholar 

  • Brem H, Tomic-Canic M (2007) Cellular and molecular basis of wound healing in diabetes. J Clin Invest 117:1219–1222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chiang CK, Hsu SP, Wu CT, Huang JW, Cheng HT, Chang YW, Hung KY, Wu KD, Liu SH (2011) Endoplasmic reticulum stress implicated in the development of renal fibrosis. Mol Med 17:1295–1305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cobbs SL, Gooch JL (2007) NFATc is required for TGFbeta-mediated transcriptional regulation of fibronectin. Biochem Biophys Res Commun 362:288–294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conway EM, Liu L, Nowakowski B, Steiner-Mosonyi M, Ribeiro SP, Michalak M (1995) Heat shock-sensitive expression of calreticulin. In vitro and in vivo up-regulation. J Biol Chem 270:17011–17016

    Article  CAS  PubMed  Google Scholar 

  • Crabtree GR (2001) Calcium, calcineurin, and the control of transcription. J Biol Chem 276:2313–2316

    Article  CAS  PubMed  Google Scholar 

  • Cybulsky AV (2010) Endoplasmic reticulum stress in proteinuric kidney disease. Kidney Int 77:187–193

    Article  CAS  PubMed  Google Scholar 

  • Fadel MP, Dziak E, Lo CM, Ferrier J, Mesaeli N, Michalak M, Opas M (1999) Calreticulin affects focal contact-dependent but not close contact-dependent cell-substratum adhesion. J Biol Chem 274:15085–15094

    Article  CAS  PubMed  Google Scholar 

  • Gardai SJ, McPhillips KA, Frasch SC, Janssen WJ, Starefeldt A, Murphy-Ullrich JE, Bratton DL, Oldenborg PA, Michalak M, Henson PM (2005) Cell-surface calreticulin initiates clearance of viable or apoptotic cells through trans-activation of LRP on the phagocyte. Cell 123:321–334

    Article  CAS  PubMed  Google Scholar 

  • Goicoechea S, Orr AW, Pallero MA, Eggleton P, Murphy-Ullrich JE (2000) Thrombospondin mediates focal adhesion disassembly through interactions with cell surface calreticulin. J Biol Chem 275:36358–36368

    Article  CAS  PubMed  Google Scholar 

  • Goicoechea S, Pallero MA, Eggleton P, Michalak M, Murphy-Ullrich JE (2002) The anti-adhesive activity of thrombospondin is mediated by the N-terminal domain of cell surface calreticulin. J Biol Chem 277:37219–37228

    Article  CAS  PubMed  Google Scholar 

  • Gold LI, Rahman M, Blechman KM, Greives MR, Churgin S, Michaels J, Callaghan MJ, Cardwell NL, Pollins AC, Michalak M, Siebert JW, Levine JP, Gurtner GC, Nanney LB, Galiano RD, Cadacio CL (2006) Overview of the role for calreticulin in the enhancement of wound healing through multiple biological effects. J Investig Dermatol Symp Proc 11:57–65

    Article  CAS  PubMed  Google Scholar 

  • Gold LI, Eggleton P, Sweetwyne MT, Van Duyn LB, Greives MR, Naylor SM, Michalak M, Murphy-Ullrich JE (2010) Calreticulin: non-endoplasmic reticulum functions in physiology and disease. FASEB J 24:665–683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gooch JL, Gorin Y, Zhang BX, Abboud HE (2004) Involvement of calcineurin in transforming growth factor-beta-mediated regulation of extracellular matrix accumulation. J Biol Chem 279:15561–15570

    Article  CAS  PubMed  Google Scholar 

  • Gray AJ, Park PW, Broekelmann TJ, Laurent GJ, Reeves JT, Stenmark KR, Mecham RP (1995) The mitogenic effects of the B beta chain of fibrinogen are mediated through cell surface calreticulin. J Biol Chem 270:26602–26606

    Article  CAS  PubMed  Google Scholar 

  • Greives MR, Samra F, Pavlides SC, Blechman KM, Naylor SM, Woodrell CD, Cadacio C, Levine JP, Bancroft TA, Michalak M, Warren SM, Gold LI (2012) Exogenous calreticulin improves diabetic wound healing. Wound Repair Regen 20:715–730

    Article  PubMed  Google Scholar 

  • Groenendyk J, Lynch J, Michalak M (2004) Calreticulin, Ca2+, and calcineurin - signaling from the endoplasmic reticulum. Mol Cell 17:383–389

    CAS  Google Scholar 

  • Groenendyk J, Lee D, Jung J, Dyck JR, Lopaschuk GD, Agellon LB, Michalak M (2016) Inhibition of the unfolded protein response mechanism prevents cardiac fibrosis. PLoS One 11:e0159682

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Grootjans J, Kaser A, Kaufman RJ, Blumberg RS (2016) The unfolded protein response in immunity and inflammation. Nat Rev Immunol 16:469–484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gunther A, Lubke N, Ermert M, Schermuly RT, Weissmann N, Breithecker A, Markart P, Ruppert C, Quanz K, Ermert L, Grimminger F, Seeger W (2003) Prevention of bleomycin-induced lung fibrosis by aerosolization of heparin or urokinase in rabbits. Am J Respir Crit Care Med 168:1358–1365

    Article  PubMed  Google Scholar 

  • Guo L, Nakamura K, Lynch J, Opas M, Olson EN, Agellon LB, Michalak M (2002) Cardiac-specific expression of calcineurin reverses embryonic lethality in calreticulin-deficient mouse. J Biol Chem 277:50776–50779

    Article  CAS  PubMed  Google Scholar 

  • Hayashida Y, Urata Y, Muroi E, Kono T, Miyata Y, Nomata K, Kanetake H, Kondo T, Ihara Y (2006) Calreticulin represses E-cadherin gene expression in Madin-Darby canine kidney cells via slug. J Biol Chem 281:32469–32484

    Article  CAS  PubMed  Google Scholar 

  • Haze K, Yoshida H, Yanagi H, Yura T, Mori K (1999) Mammalian transcription factor ATF6 is synthesized as a transmembrane protein and activated by proteolysis in response to endoplasmic reticulum stress. Mol Biol Cell 10:3787–3799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heal R, McGivan J (1998) Induction of calreticulin expression in response to amino acid deprivation in Chinese hamster ovary cells. Biochem J 329(Pt 2):389–394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hebert DN, Molinari M (2007) In and out of the ER: protein folding, quality control, degradation, and related human diseases. Physiol Rev 87:1377–1408

    Article  CAS  PubMed  Google Scholar 

  • Helenius A, Aebi M (2001) Intracellular functions of N-linked glycans. Science 291:2364–2369

    Article  CAS  PubMed  Google Scholar 

  • Ihara Y, Inai Y, Ikezaki M (2011) Alteration of integrin-dependent adhesion and signaling in EMT-like MDCK cells established through overexpression of calreticulin. J Cell Biochem 112:2518–2528

    Article  CAS  PubMed  Google Scholar 

  • Ishiyama N, Shibata H, Kanzaki M, Shiozaki S, Miyazaki J, Kobayashi I, Kojima I (1996) Calcium as a second messenger of the action of transforming growth factor-beta on insulin secretion. Mol Cell Endocrinol 117:1–6

    Article  CAS  PubMed  Google Scholar 

  • Jayaraman L, Massague J (2000) Distinct oligomeric states of SMAD proteins in the transforming growth factor-beta pathway. J Biol Chem 275:40710–40717

    Article  CAS  PubMed  Google Scholar 

  • Jethmalani SM, Henle KJ (1998) Calreticulin associates with stress proteins: implications for chaperone function during heat stress. J Cell Biochem 69:30–43

    Article  CAS  PubMed  Google Scholar 

  • Junn E, Lee KN, Ju HR, Han SH, Im JY, Kang HS, Lee TH, Bae YS, Ha KS, Lee ZW, Rhee SG, Choi I (2000) Requirement of hydrogen peroxide generation in TGF-beta 1 signal transduction in human lung fibroblast cells: involvement of hydrogen peroxide and Ca2+ in TGF-beta 1-induced IL-6 expression. J Immunol 165:2190–2197

    Article  CAS  PubMed  Google Scholar 

  • Kamp DW, Liu G, Cheresh P, Kim SJ, Mueller A, Lam AP, Trejo H, Williams D, Tulasiram S, Baker M, Ridge K, Chandel NS, Beri R (2013) Asbestos-induced alveolar epithelial cell apoptosis. The role of endoplasmic reticulum stress response. Am J Respir Cell Mol Biol 49:892–901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang MJ, Chung J, Ryoo HD (2012) CDK5 and MEKK1 mediate pro-apoptotic signalling following endoplasmic reticulum stress in an autosomal dominant retinitis pigmentosa model. Nat Cell Biol 14:409–415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanzaki T, Tamura K, Takahashi K, Saito Y, Akikusa B, Oohashi H, Kasayuki N, Ueda M, Morisaki N (1995) In vivo effect of TGF- beta 1. Enhanced intimal thickening by administration of TGF- beta 1 in rabbit arteries injured with a balloon catheter. Arterioscler Thromb Vasc Biol 15:1951–1957

    Article  CAS  PubMed  Google Scholar 

  • Kapoor M, Ellgaard L, Gopalakrishnapai J, Schirra C, Gemma E, Oscarson S, Helenius A, Surolia A (2004) Mutational analysis provides molecular insight into the carbohydrate-binding region of calreticulin: pivotal roles of tyrosine-109 and aspartate-135 in carbohydrate recognition. Biochemistry 43:97–106

    Article  CAS  PubMed  Google Scholar 

  • Karamichos D, Hutcheon AE, Zieske JD (2014) Reversal of fibrosis by TGF-beta3 in a 3D in vitro model. Exp Eye Res 124:31–36

    Article  CAS  PubMed  Google Scholar 

  • Karimzadeh F, Opas M (2017) Calreticulin is required for TGF-beta-induced epithelial-to-mesenchymal transition during Cardiogenesis in mouse embryonic stem cells. Stem Cell Rep 8:1299–1311

    Article  CAS  Google Scholar 

  • Khan MI, Pichna BA, Shi Y, Bowes AJ, Werstuck GH (2009) Evidence supporting a role for endoplasmic reticulum stress in the development of atherosclerosis in a hyperglycaemic mouse model. Antioxid Redox Signal 11:2289–2298

    Article  CAS  PubMed  Google Scholar 

  • Kim I, Xu W, Reed JC (2008) Cell death and endoplasmic reticulum stress: disease relevance and therapeutic opportunities. Nat Rev Drug Discov 7:1013–1030

    Article  CAS  PubMed  Google Scholar 

  • Kinnula VL, Fattman CL, Tan RJ, Oury TD (2005) Oxidative stress in pulmonary fibrosis: a possible role for redox modulatory therapy. Am J Respir Crit Care Med 172:417–422

    Article  PubMed  PubMed Central  Google Scholar 

  • Kitamura M (2008) Endoplasmic reticulum stress in the kidney. Clin Exp Nephrol 12:317–325

    Article  CAS  PubMed  Google Scholar 

  • Korfei M, Ruppert C, Mahavadi P, Henneke I, Markart P, Koch M, Lang G, Fink L, Bohle RM, Seeger W, Weaver TE, Guenther A (2008) Epithelial endoplasmic reticulum stress and apoptosis in sporadic idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 178:838–846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kurokawa M, Hideshima M, Ishii Y, Kyuwa S, Yoshikawa Y (2009) Aortic ER stress in streptozotocin-induced diabetes mellitus in APA hamsters. Exp Anim 58:113–121

    Article  CAS  PubMed  Google Scholar 

  • Kuwano K (2008) Involvement of epithelial cell apoptosis in interstitial lung diseases. Intern Med 47:345–353

    Article  PubMed  Google Scholar 

  • Kypreou KP, Kavvadas P, Karamessinis P, Peroulis M, Alberti A, Sideras P, Psarras S, Capetanaki Y, Politis PK, Charonis AS (2008) Altered expression of calreticulin during the development of fibrosis. Proteomics 8:2407–2419

    Article  CAS  PubMed  Google Scholar 

  • Lawson WE, Crossno PF, Polosukhin VV, Roldan J, Cheng DS, Lane KB, Blackwell TR, Xu C, Markin C, Ware LB, Miller GG, Loyd JE, Blackwell TS (2008) Endoplasmic reticulum stress in alveolar epithelial cells is prominent in IPF: association with altered surfactant protein processing and herpesvirus infection. Am J Phys Lung Cell Mol Phys 294:L1119–L1126

    CAS  Google Scholar 

  • Lawson WE, Cheng DS, Degryse AL, Tanjore H, Polosukhin VV, Xu XC, Newcomb DC, Jones BR, Roldan J, Lane KB, Morrisey EE, Beers MF, Yull FE, Blackwell TS (2011) Endoplasmic reticulum stress enhances fibrotic remodeling in the lungs. Proc Natl Acad Sci U S A 108:10562–10567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leach MR, Cohen-Doyle MF, Thomas DY, Williams DB (2002) Localization of the lectin, ERp57 binding, and polypeptide binding sites of calnexin and calreticulin. J Biol Chem 277:29686–29697

    Article  CAS  PubMed  Google Scholar 

  • Lee ES, Kim HM, Kang JS, Lee EY, Yadav D, Kwon MH, Kim YM, Kim HS, Chung CH (2016) Oleanolic acid and N-acetylcysteine ameliorate diabetic nephropathy through reduction of oxidative stress and endoplasmic reticulum stress in a type 2 diabetic rat model. Nephrol Dial Transplant 31:391–400

    Article  CAS  PubMed  Google Scholar 

  • Lenna S, Trojanowska M (2012) The role of endoplasmic reticulum stress and the unfolded protein response in fibrosis. Curr Opin Rheumatol 24:663–668

    Article  CAS  PubMed  Google Scholar 

  • Lindenmeyer MT, Rastaldi MP, Ikehata M, Neusser MA, Kretzler M, Cohen CD, Schlondorff D (2008) Proteinuria and hyperglycemia induce endoplasmic reticulum stress. J Am Soc Nephrol 19:2225–2236

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu SH, Yang CC, Chan DC, Wu CT, Chen LP, Huang JW, Hung KY, Chiang CK (2016) Chemical chaperon 4-phenylbutyrate protects against the endoplasmic reticulum stress-mediated renal fibrosis in vivo and in vitro. Oncotarget 7:22116–22127

    PubMed  PubMed Central  Google Scholar 

  • Llewellyn DH, Sheikh FN, Kendall JM, Campbell AK (1995) Upregulation of calreticulin expression in HeLa cells by calcium-stress. Biochem Soc Trans 23:330S

    Article  CAS  PubMed  Google Scholar 

  • Lynch J, Michalak M (2003) Calreticulin is an upstream regulator of calcineurin. Biochem Biophys Res Commun 311:1173–1179

    Article  CAS  PubMed  Google Scholar 

  • Lynch J, Guo L, Gelebart P, Chilibeck K, Xu J, Molkentin JD, Agellon LB, Michalak M (2005) Calreticulin signals upstream of calcineurin and MEF2C in a critical Ca(2+)-dependent signaling cascade. J Cell Biol 170:37–47

  • Ma Y, Brewer JW, Diehl JA, Hendershot LM (2002) Two distinct stress signaling pathways converge upon the CHOP promoter during the mammalian unfolded protein response. J Mol Biol 318:1351–1365

    Article  CAS  PubMed  Google Scholar 

  • Majesky MW, Lindner V, Twardzik DR, Schwartz SM, Reidy MA (1991) Production of transforming growth factor beta 1 during repair of arterial injury. J Clin Invest 88:904–910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malhotra JD, Kaufman RJ (2007) The endoplasmic reticulum and the unfolded protein response. Semin Cell Dev Biol 18:716–731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McGowan TA, Madesh M, Zhu Y, Wang L, Russo M, Deelman L, Henning R, Joseph S, Hajnoczky G, Sharma K (2002) TGF-beta-induced ca(2+) influx involves the type III IP(3) receptor and regulates actin cytoskeleton. Am J Physiol Ren Physiol 282:F910–F920

    Article  CAS  Google Scholar 

  • Mery L, Mesaeli N, Michalak M, Opas M, Lew DP, Krause KH (1996) Overexpression of calreticulin increases intracellular Ca2+ storage and decreases store-operated Ca2+ influx. J Biol Chem 271:9332–9339

    Article  CAS  PubMed  Google Scholar 

  • Mesaeli N, Nakamura K, Zvaritch E, Dickie P, Dziak E, Krause KH, Opas M, MacLennan DH, Michalak M (1999) Calreticulin is essential for cardiac development. J Cell Biol 144:857–868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Michalak M, Milner RE, Burns K, Opas M (1992) Calreticulin. Biochem J 285(Pt 3):681–692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Michalak M, Groenendyk J, Szabo E, Gold LI, Opas M (2009) Calreticulin, a multi-process calcium-buffering chaperone of the endoplasmic reticulum. Biochem J 417:651–666

    Article  CAS  PubMed  Google Scholar 

  • Murphy-Ullrich JE (2001) The de-adhesive activity of matricellular proteins: is intermediate cell adhesion an adaptive state? J Clin Invest 107:785–790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nabel EG, Shum L, Pompili VJ, Yang ZY, San H, Shu HB, Liptay S, Gold L, Gordon D, Derynck R et al (1993) Direct transfer of transforming growth factor beta 1 gene into arteries stimulates fibrocellular hyperplasia. Proc Natl Acad Sci U S A 90:10759–10763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nanney LB, Woodrell CD, Greives MR, Cardwell NL, Pollins AC, Bancroft TA, Chesser A, Michalak M, Rahman M, Siebert JW, Gold LI (2008) Calreticulin enhances porcine wound repair by diverse biological effects. Am J Pathol 173:610–630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nguyen TO, Capra JD, Sontheimer RD (1996) Calreticulin is transcriptionally upregulated by heat shock, calcium and heavy metals. Mol Immunol 33:379–386

    Article  CAS  PubMed  Google Scholar 

  • Ochoa O, Torres FM, Shireman PK (2007) Chemokines and diabetic wound healing. Vascular 15:350–355

    Article  PubMed  Google Scholar 

  • Omura T, Asari M, Yamamoto J, Oka K, Hoshina C, Maseda C, Awaya T, Tasaki Y, Shiono H, Yonezawa A, Masuda S, Matsubara K, Shimizu K (2013) Sodium tauroursodeoxycholate prevents paraquat-induced cell death by suppressing endoplasmic reticulum stress responses in human lung epithelial A549 cells. Biochem Biophys Res Commun 432:689–694

    Article  CAS  PubMed  Google Scholar 

  • Orr AW, Pallero MA, Murphy-Ullrich JE (2002) Thrombospondin stimulates focal adhesion disassembly through Gi- and phosphoinositide 3-kinase-dependent ERK activation. J Biol Chem 277:20453–20460

    Article  CAS  PubMed  Google Scholar 

  • Orr AW, Elzie CA, Kucik DF, Murphy-Ullrich JE (2003a) Thrombospondin signaling through the calreticulin/LDL receptor-related protein co-complex stimulates random and directed cell migration. J Cell Sci 116:2917–2927

    Article  CAS  PubMed  Google Scholar 

  • Orr AW, Pedraza CE, Pallero MA, Elzie CA, Goicoechea S, Strickland DK, Murphy-Ullrich JE (2003b) Low density lipoprotein receptor-related protein is a calreticulin coreceptor that signals focal adhesion disassembly. J Cell Biol 161:1179–1189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ostwald TJ, MacLennan DH (1974) Isolation of a high affinity calcium-binding protein from sarcoplasmic reticulum. J Biol Chem 249:974–979

    CAS  PubMed  Google Scholar 

  • Pallero MA, Elzie CA, Chen J, Mosher DF, Murphy-Ullrich JE (2008) Thrombospondin 1 binding to calreticulin-LRP1 signals resistance to anoikis. FASEB J 22:3968–3979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Papp S, Fadel MP, Kim H, McCulloch CA, Opas M (2007) Calreticulin affects fibronectin-based cell-substratum adhesion via the regulation of c-Src activity. J Biol Chem 282:16585–16598

    Article  CAS  PubMed  Google Scholar 

  • Papp S, Szabo E, Kim H, McCulloch CA, Opas M (2008) Kinase-dependent adhesion to fibronectin: regulation by calreticulin. Exp Cell Res 314:1313–1326

    Article  CAS  PubMed  Google Scholar 

  • Pereira L, Matthes J, Schuster I, Valdivia HH, Herzig S, Richard S, Gomez AM (2006) Mechanisms of [Ca2+]i transient decrease in cardiomyopathy of db/db type 2 diabetic mice. Diabetes 55:608–615

    Article  CAS  PubMed  Google Scholar 

  • Plataki M, Koutsopoulos AV, Darivianaki K, Delides G, Siafakas NM, Bouros D (2005) Expression of apoptotic and antiapoptotic markers in epithelial cells in idiopathic pulmonary fibrosis. Chest 127:266–274

    Article  PubMed  Google Scholar 

  • Prakoura N, Politis PK, Ihara Y, Michalak M, Charonis AS (2013) Epithelial calreticulin up-regulation promotes profibrotic responses and tubulointerstitial fibrosis development. Am J Pathol 183:1474–1487

    Article  CAS  PubMed  Google Scholar 

  • Rizzuto R, Pinton P, Carrington W, Fay FS, Fogarty KE, Lifshitz LM, Tuft RA, Pozzan T (1998) Close contacts with the endoplasmic reticulum as determinants of mitochondrial Ca2+ responses. Science 280:1763–1766

    Article  CAS  PubMed  Google Scholar 

  • Roberts AB (1998) Molecular and cell biology of TGF-beta. Miner Electrolyte Metab 24:111–119

    Article  CAS  PubMed  Google Scholar 

  • Ron D, Hubbard SR (2008) How IRE1 reacts to ER stress. Cell 132:24–26

    Article  CAS  PubMed  Google Scholar 

  • Ron D, Walter P (2007) Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol 8:519–529

    Article  CAS  PubMed  Google Scholar 

  • Rutkowski DT, Kaufman RJ (2007) That which does not kill me makes me stronger: adapting to chronic ER stress. Trends Biochem Sci 32:469–476

    Article  CAS  PubMed  Google Scholar 

  • Saito Y, Ihara Y, Leach MR, Cohen-Doyle MF, Williams DB (1999) Calreticulin functions in vitro as a molecular chaperone for both glycosylated and non-glycosylated proteins. EMBO J 18:6718–6729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sato M, Muragaki Y, Saika S, Roberts AB, Ooshima A (2003) Targeted disruption of TGF-beta1/Smad3 signaling protects against renal tubulointerstitial fibrosis induced by unilateral ureteral obstruction. J Clin Invest 112:1486–1494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith MJ, Koch GL (1989) Multiple zones in the sequence of calreticulin (CRP55, calregulin, HACBP), a major calcium binding ER/SR protein. EMBO J 8:3581–3586

    CAS  PubMed  PubMed Central  Google Scholar 

  • Spiro RG, Zhu Q, Bhoyroo V, Soling HD (1996) Definition of the lectin-like properties of the molecular chaperone, calreticulin, and demonstration of its copurification with endomannosidase from rat liver Golgi. J Biol Chem 271:11588–11594

    Article  CAS  PubMed  Google Scholar 

  • Sun XY, Qin HJ, Zhang Z, Xu Y, Yang XC, Zhao DM, Li XN, Sun LK (2016) Valproate attenuates diabetic nephropathy through inhibition of endoplasmic reticulum stressinduced apoptosis. Mol Med Rep 13:661–668

    Article  CAS  PubMed  Google Scholar 

  • Sweetwyne MT, Pallero MA, Lu A, van Duyn Graham L, Murphy-Ullrich JE (2010) The calreticulin-binding sequence of thrombospondin 1 regulates collagen expression and organization during tissue remodeling. Am J Pathol 177:1710–1724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szabo E, Papp S, Opas M (2007) Differential calreticulin expression affects focal contacts via the calmodulin/CaMK II pathway. J Cell Physiol 213:269–277

    Article  CAS  PubMed  Google Scholar 

  • Tabas I (2010) The role of endoplasmic reticulum stress in the progression of atherosclerosis. Circ Res 107:839–850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanaka K, Shirai A, Ito Y, Namba T, Tahara K, Yamakawa N, Mizushima T (2012) Expression of 150-kDa oxygen-regulated protein (ORP150) stimulates bleomycin-induced pulmonary fibrosis and dysfunction in mice. Biochem Biophys Res Commun 425:818–824

    Article  CAS  PubMed  Google Scholar 

  • Tanjore H, Cheng DS, Degryse AL, Zoz DF, Abdolrasulnia R, Lawson WE, Blackwell TS (2011) Alveolar epithelial cells undergo epithelial-to-mesenchymal transition in response to endoplasmic reticulum stress. J Biol Chem 286:30972–30980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanjore H, Lawson WE, Blackwell TS (2013) Endoplasmic reticulum stress as a pro-fibrotic stimulus. Biochim Biophys Acta 1832:940–947

    Article  CAS  PubMed  Google Scholar 

  • Tarr JM, Young PJ, Morse R, Shaw DJ, Haigh R, Petrov PG, Johnson SJ, Winyard PG, Eggleton P (2010) A mechanism of release of calreticulin from cells during apoptosis. J Mol Biol 401:799–812

    Article  CAS  PubMed  Google Scholar 

  • Tokuhiro K, Satouh Y, Nozawa K, Isotani A, Fujihara Y, Hirashima Y, Matsumura H, Takumi K, Miyano T, Okabe M, Benham AM, Ikawa M (2015) Calreticulin is required for development of the cumulus oocyte complex and female fertility. Sci Rep 5:14254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ulianich L, Garbi C, Treglia AS, Punzi D, Miele C, Raciti GA, Beguinot F, Consiglio E, Di Jeso B (2008) ER stress is associated with dedifferentiation and an epithelial-to-mesenchymal transition-like phenotype in PC Cl3 thyroid cells. J Cell Sci 121:477–486

    Article  CAS  PubMed  Google Scholar 

  • Van Duyn Graham L, Sweetwyne MT, Pallero MA, Murphy-Ullrich JE (2010) Intracellular calreticulin regulates multiple steps in fibrillar collagen expression, trafficking, and processing into the extracellular matrix. J Biol Chem 285:7067–7078

  • Varadarajan S, Bampton ET, Smalley JL, Tanaka K, Caves RE, Butterworth M, Wei J, Pellecchia M, Mitcheson J, Gant TW, Dinsdale D, Cohen GM (2012) A novel cellular stress response characterised by a rapid reorganisation of membranes of the endoplasmic reticulum. Cell Death Differ 19:1896–1907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walter P, Ron D (2011) The unfolded protein response: from stress pathway to homeostatic regulation. Science 334:1081–1086

    Article  CAS  PubMed  Google Scholar 

  • Wang JQ, Chen X, Zhang C, Tao L, Zhang ZH, Liu XQ, Xu YB, Wang H, Li J, Xu DX (2013) Phenylbutyric acid protects against carbon tetrachloride-induced hepatic fibrogenesis in mice. Toxicol Appl Pharmacol 266:307–316

    Article  CAS  PubMed  Google Scholar 

  • Willis BC, Borok Z (2007) TGF-beta-induced EMT: mechanisms and implications for fibrotic lung disease. Nat Rev Mol Cell Biol 293:L525–L534

    CAS  Google Scholar 

  • Willis BC, Liebler JM, Luby-Phelps K, Nicholson AG, Crandall ED, du Bois RM, Borok Z (2005) Induction of epithelial-mesenchymal transition in alveolar epithelial cells by transforming growth factor-beta1: potential role in idiopathic pulmonary fibrosis. Am J Pathol 166:1321–1332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wrana JL (2000) Regulation of Smad activity. Cell 100:189–192

    Article  CAS  PubMed  Google Scholar 

  • Wu X, Liu X, Zhu X, Tang C (2007) Hypoxic preconditioning induces delayed cardioprotection through p38 MAPK-mediated calreticulin upregulation. Shock 27:572–577

    Article  CAS  PubMed  Google Scholar 

  • Wu Y, Xu X, Ma L, Yi Q, Sun W, Tang L (2017) Calreticulin regulates TGF-beta1-induced epithelial mesenchymal transition through modulating Smad signaling and calcium signaling. Int J Biochem Cell Biol 90:103–113

    Article  CAS  PubMed  Google Scholar 

  • Wynn TA, Ramalingam TR (2012) Mechanisms of fibrosis: therapeutic translation for fibrotic disease. Nat Med 18:1028–1040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan Q, Murphy-Ullrich JE, Song Y (2010) Structural insight into the role of thrombospondin-1 binding to calreticulin in calreticulin-induced focal adhesion disassembly. Biochemistry 49:3685–3694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Li R, Shi W, Liang X, Liu S, Ye Z, Yu C, Chen Y, Zhang B, Wang W, Lai Y, Ma J, Li Z, Tan X (2013) NFAT2 inhibitor ameliorates diabetic nephropathy and podocyte injury in db/db mice. Br J Pharmacol 170:426–439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Wang Y, Pandupuspitasari NS, Wu G, Xiang X, Gong Q, Xiong W, Wang CY, Yang P, Ren B (2017) Endoplasmic reticulum stress, a new wrestler, in the pathogenesis of idiopathic pulmonary fibrosis. Am J Transl Res 9:722–735

    PubMed  PubMed Central  Google Scholar 

  • Zimmerman KA, Graham LV, Pallero MA, Murphy-Ullrich JE (2013) Calreticulin regulates transforming growth factor-beta-stimulated extracellular matrix production. J Biol Chem 288:14584–14598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zimmerman KA, Xing D, Pallero MA, Lu A, Ikawa M, Black L, Hoyt KL, Kabarowski JH, Michalak M, Murphy-Ullrich JE (2015) Calreticulin regulates Neointima formation and collagen deposition following carotid artery ligation. J Vasc Res 52:306–320

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Original research presented in this review was supported by grants from the American Heart Association (12IRG9160008) and from the Department of Defense (W81XWH-14-1-0203) to JEMU and by NIH T32 HL007918 and T32 AI007051 to KAZ.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joanne E. Murphy-Ullrich.

Additional information

The authors confirm independence from the sponsors; the content of the article has not been influenced by the sponsors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Owusu, B.Y., Zimmerman, K.A. & Murphy-Ullrich, J.E. The role of the endoplasmic reticulum protein calreticulin in mediating TGF-β-stimulated extracellular matrix production in fibrotic disease. J. Cell Commun. Signal. 12, 289–299 (2018). https://doi.org/10.1007/s12079-017-0426-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12079-017-0426-2

Keywords

Navigation