Advertisement

Journal of Cell Communication and Signaling

, Volume 12, Issue 1, pp 91–101 | Cite as

The role of Sulforaphane in cancer chemoprevention and health benefits: a mini-review

  • Reza Bayat MokhtariEmail author
  • Narges Baluch
  • Tina S. Homayouni
  • Evgeniya Morgatskaya
  • Sushil Kumar
  • Parandis Kazemi
  • Herman YegerEmail author
Research Article

Abstract

Cancer is a multi-stage process resulting from aberrant signaling pathways driving uncontrolled proliferation of transformed cells. The development and progression of cancer from a premalignant lesion towards a metastatic tumor requires accumulation of mutations in many regulatory genes of the cell. Different chemopreventative approaches have been sought to interfere with initiation and control malignant progression. Here we present research on dietary compounds with evidence of cancer prevention activity that highlights the potential beneficial effect of a diet rich in cruciferous vegetables. The Brassica family of cruciferous vegetables such as broccoli is a rich source of glucosinolates, which are metabolized to isothiocyanate compounds. Amongst a number of related variants of isothiocyanates, sulforaphane (SFN) has surfaced as a particularly potent chemopreventive agent based on its ability to target multiple mechanisms within the cell to control carcinogenesis. Anti-inflammatory, pro-apoptotic and modulation of histones are some of the more important and known mechanisms by which SFN exerts chemoprevention. The effect of SFN on cancer stem cells is another area of interest that has been explored in recent years and may contribute to its chemopreventive properties. In this paper, we briefly review structure, pharmacology and preclinical studies highlighting chemopreventive effects of SFN.

Keywords

Chemopreventive agents Isothiocyanates Sulforaphane 

Notes

Acknowledgments

We thank Dr. Bikul Das, M.D., Ph.D. (The Forsyth Institute; Cambridge, MA) for critical review of the manuscript.

Author contributions

Analysis and interpretation of the data: RBM, NB, HY; writing of the manuscript: RBM, NB, TSH, ZM, SK, PK and critical revision of the manuscript for intellectual content: RBM, NB, HY.

Compliance with ethical standards

Conflicts of interest

None of the authors have any competing interests in the manuscript.

References

  1. Abhishek Bhanot RS, Noolvi MN (2011) Natural sources as potential anti-cancer agents: a review. Intern J Phytomed 3:1Google Scholar
  2. Aggarwal BB, Gehlot P (2009) Inflammation and cancer: how friendly is the relationship for cancer patients? Curr Opin Pharmacol 9(4):351–369CrossRefPubMedPubMedCentralGoogle Scholar
  3. AICR (2007) Food, nutrition, physical activity, and the prevention of cancer: a global perspective. World Cancer Research Fund/American Institute for Cancer Research, Washington, DCGoogle Scholar
  4. Alumkal JJ, Slottke R, Schwartzman J, Cherala G, Munar M, Graff JN, Beer TM, Ryan CW, Koop DR, Gibbs A, Gao L, Flamiatos JF, Tucker E, Kleinschmidt R, Mori M (2015) A phase II study of sulforaphane-rich broccoli sprout extracts in men with recurrent prostate cancer. Investig New Drugs 33(2):480–489CrossRefGoogle Scholar
  5. Antosiewicz HA, Johnson DE, Singh SV (2006) Sulforaphane causes autophagy to inhibit release of cytochrome C and apoptosis in human prostate cancer cells. Cancer Res 66(11):5828–5835CrossRefGoogle Scholar
  6. Atwell LL, Hsu A, Wong CP, Stevens JF, Bella D, Yu TW, Pereira CB, Löhr CV, Christensen JM, Dashwood RH, Williams DE, Shannon J, Ho E (2015) Absorption and chemopreventive targets of sulforaphane in humans following consumption of broccoli sprouts or a myrosinase-treated broccoli sprout extract. Mol Nutr Food Res 59(3):242–233CrossRefGoogle Scholar
  7. Belinsky SA, Grimes MJ, Picchi MA, Mitchell HD, Stidley CA, Tesfaigzi Y, Channell MM, Liu Y, Casero RA Jr, Baylin SB, Reed MD, Tellez CS, March TH (2011) Combination therapy with vidaza and entinostat suppresses tumor growth and reprograms the epigenome in an orthotopic lung cancer model. Cancer Res 71(2):454–462CrossRefPubMedPubMedCentralGoogle Scholar
  8. Benazzi C, Al-Dissi A, Chau CH, Figg WD, Sarli G, de Oliveira JT, Gärtner F (2014) Angiogenesis in spontaneous tumors and implications for comparative tumor biology. Sci World J 2014:1–17CrossRefGoogle Scholar
  9. Ben-Neriah Y, Karin M (2011) Inflammation meets cancer, with NF-kappaB as the matchmaker. Nat Immunol 12(8):715–723CrossRefPubMedGoogle Scholar
  10. Bertl E, Bartsch H, Gerhauser C (2006) Inhibition of angiogenesis and endothelial cell functions are novel sulforaphane-mediated mechanisms in chemoprevention. Mol Cancer Ther 5(3):575–585CrossRefPubMedGoogle Scholar
  11. Choi S, Lew KL, Xiao H, Herman-Antosiewicz A, Xiao D, Brown CK, Singh SV (2007) D,L-Sulforaphane-induced cell death in human prostate cancer cells is regulated by inhibitor of apoptosis family proteins and Apaf-1. Carcinogenesis 28(1):151–162CrossRefPubMedGoogle Scholar
  12. Clarke JD, Hsu A, Riedl K, Bella D, Schwartz SJ, Stevens JF, Ho E (2011a) Bioavailability and inter-conversion of sulforaphane and erucin in human subjects consuming broccoli sprouts or broccoli supplement in a cross-over study design. Pharmacol Res 64(5):456–463CrossRefPubMedPubMedCentralGoogle Scholar
  13. Clarke JD, Hsu A, Yu Z, Dashwood RH, Ho E (2011b) Differential effects of sulforaphane on histone deacetylases, cell cycle arrest and apoptosis in normal prostate cells versus hyperplastic and cancerous prostate cells. Mol Nutr Food Res 55(7):999–1009CrossRefPubMedPubMedCentralGoogle Scholar
  14. de Conti A, Kuroiwa-Trzmielina J, Horst MA, Bassoli BK, Chagas CE, Purgatto E, Cavalher FP, Camargo AA, Jordão AA Jr, Vannucchi H, Scolastici C, Ong TP, Moreno FS (2012) Chemopreventive effects of the dietary histone deacetylase inhibitor tributyrin alone or in combination with vitamin a during the promotion phase of rat hepatocarcinogenesis. J Nutr Biochem 8:860–866CrossRefGoogle Scholar
  15. Cornblatt BS, Ye L, Dinkova-Kostova AT, Erb M, Fahey JW, Singh NK, Chen MS, Stierer T, Garrett-Mayer E, Argani P, Davidson NE, Talalay P, Kensler TW, Visvanathan K (2007) Preclinical and clinical evaluation of sulforaphane for chemoprevention in the breast. Carcinogenesis 28(7):1485–1490CrossRefPubMedGoogle Scholar
  16. Cramer JM, Jeffery EH (2011) Sulforaphane absorption and excretion following ingestion of a semi-purified broccoli powder rich in glucoraphanin and broccoli sprouts in healthy men. Nutr Cancer 63(2):196–201CrossRefPubMedGoogle Scholar
  17. Dinkova-Kostova AT, Jenkins SN, Fahey JW, Ye L, Wehage SL, Liby KT, Stephenson KK, Wade KL, Talalay P (2006) Protection against UV-light-induced skin carcinogenesis in SKH-1 high-risk mice by sulforaphane-containing broccoli sprout extracts. Cancer Lett 240(2):243–252CrossRefPubMedGoogle Scholar
  18. Disis ML (2010) Immune regulation of cancer. J Clin Oncol 28(29):4531–4538CrossRefPubMedPubMedCentralGoogle Scholar
  19. Egner PA, Chen JG, Zarth AT, Ng DK, Wang JB, Kensler KH, Jacobson LP, Muñoz A, Johnson JL, Groopman JD, Fahey JW, Talalay P, Zhu J et al (2014) Rapid and sustainable detoxication of airborne pollutants by broccoli sprout beverage: results of a randomized clinical trial in China. Cancer Prev Res 7(8):813–823CrossRefGoogle Scholar
  20. Fahey JW, Talalay P, Kensler TW (2012) Notes from the field: "green" chemoprevention as frugal medicine. Cancer Prev Res 5(2):179–188CrossRefGoogle Scholar
  21. Fraga MF, Ballestar E, Villar-Garea A, Boix-Chornet M, Espada J, Schotta G, Bonaldi T, Haydon C, Ropero S, Petrie K, Iyer NG, Pérez-Rosado A, Calvo E et al (2005) Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer. Nat Genet 37(4):391–400CrossRefPubMedGoogle Scholar
  22. Gal-Yam EN, Saito Y, Egger G, Jones PA (2008) Cancer epigenetics: modifications, screening, and therapy. Annu Rev Med 59:267–280CrossRefPubMedGoogle Scholar
  23. Heiss E, Herhaus C, Klimo K, Bartsch H, Gerhauser C (2001) Nuclear factor kappa B is a molecular target for sulforaphane-mediated anti-inflammatory mechanisms. J Biol Chem 276(34):32008–32015CrossRefPubMedGoogle Scholar
  24. Herr I, Buchler MW (2010) Dietary constituents of broccoli and other cruciferous vegetables: implications for prevention and therapy of cancer. Cancer Treat Rev 36(5):377–383CrossRefPubMedGoogle Scholar
  25. Hu R, Khor TO, Shen G, Jeong WS, Hebbar V, Chen C, Xu C, Reddy B, Chada K, Kong AN (2006) Cancer chemoprevention of intestinal polyposis in ApcMin/+ mice by sulforaphane, a natural product derived from cruciferous vegetable. Carcinogenesis 27(10):2038–2046CrossRefPubMedGoogle Scholar
  26. Huang TY, Chang WC, Wang MY, Yang YR, Hsu YC (2012) Effect of sulforaphane on growth inhibition in human brain malignant glioma GBM 8401 cells by means of mitochondrial-and MEK/ERK-mediated apoptosis pathway. Cell Biochem Biophys 63(3):247–259CrossRefPubMedGoogle Scholar
  27. Islam SS, Mokhtari RB, Akbari P, Hatina J, Yeger H, Farhat WA (2016) Simultaneous targeting of bladder tumor growth, survival, and epithelial-to-mesenchymal transition with a novel therapeutic combination of acetazolamide (AZ) and Sulforaphane (SFN). Target Oncol 11(2):209–227CrossRefPubMedGoogle Scholar
  28. Jaenisch R, Bird A (2003) Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet:245–254Google Scholar
  29. Jee HG, Lee KE, Kim JB, Shin HK, Youn YK (2011) Sulforaphane inhibits oral carcinoma cell migration and invasion in vitro. Phytother Res 25(11):1623–1628CrossRefPubMedGoogle Scholar
  30. Jeffery EH, Keck AS (2008) Translating knowledge generated by epidemiological and in vitro studies into dietary cancer prevention. Mol Nutr Food Res 52(Suppl 1):S7–17PubMedGoogle Scholar
  31. Jost PJ, Ruland J (2007) Aberrant NF-kappaB signaling in lymphoma: mechanisms, consequences, and therapeutic implications. Blood 109(7):2700–2707PubMedGoogle Scholar
  32. Kallifatidis G, Labsch S, Rausch V, Mattern J, Gladkich J, Moldenhauer G, Büchler MW, Salnikov AV, Herr I (2011) Sulforaphane increases drug-mediated cytotoxicity toward cancer stem-like cells of pancreas and prostate. Mol Ther 19(1):188–195CrossRefPubMedGoogle Scholar
  33. Kaminski BM, Weigert A, Brune B, Schumacher M, Wenzel U, Steinhilber D, Stein J, Ulrich S (2011) Sulforaphane potentiates oxaliplatin-induced cell growth inhibition in colorectal cancer cells via induction of different modes of cell death. Cancer Chemother Pharmacol 67(5):1167–1178CrossRefPubMedGoogle Scholar
  34. Kanematsu S, Uehara N, Miki H, Yoshizawa K, Kawanaka A, Yuri T, Tsubura A (2010) Autophagy inhibition enhances sulforaphane-induced apoptosis in human breast cancer cells. Anticancer Res 30(9):3381–3390PubMedGoogle Scholar
  35. Kassahun K, Davis M, Hu P, Martin B, Baillie T (1997) Biotransformation of the naturally occurring isothiocyanate sulforaphane in the rat: identification of phase I metabolites and glutathione conjugates. Chem Res Toxicol 10(11):1228–1233CrossRefPubMedGoogle Scholar
  36. Kim DH, Sung B, Kang YJ, Hwang SY, Kim MJ, Yoon JH, Im E, Kim ND (2015) Sulforaphane inhibits hypoxia-induced HIF-1alpha and VEGF expression and migration of human colon cancer cells. Int J Oncol 47(6):2226–2232CrossRefPubMedGoogle Scholar
  37. Kolonel LN, Hankin JH, Whittemore AS, Wu AH, Gallagher RP, Wilkens LR, John EM, Howe GR, Dreon DM, West DW, Paffenbarger RS Jr (2000) Vegetables, fruits, legumes and prostate cancer: a multiethnic case-control study. Cancer Epidemiol Biomark Prev 9(8):795–804Google Scholar
  38. Kumar A, Sabbioni G (2010) New biomarkers for monitoring the levels of isothiocyanates in humans. Chem Res Toxicol 23(4):756–765CrossRefPubMedGoogle Scholar
  39. Kwak MK, Wakabayashi N, Kensler TW (2004) Chemoprevention through the Keap1-Nrf2 signaling pathway by phase 2 enzyme inducers. Mutat Res 555(1–2):133–148CrossRefPubMedGoogle Scholar
  40. Labsch S, Liu L, Bauer N, Zhang Y, Aleksandrowicz E, Gladkich J et al (2014) Sulforaphane and TRAIL induce a synergistic elimination of advanced prostate cancer stem-like cells. Int J Oncol 44(5):1470–1480CrossRefPubMedPubMedCentralGoogle Scholar
  41. Langouet S, Furge LL, Kerriguy N, Nakamura K, Guillouzo A, Guengerich FP (2000) Inhibition of human cytochrome P450 enzymes by 1,2-dithiole-3-thione, oltipraz and its derivatives, and sulforaphane. Chem Res Toxicol 13(4):245–252CrossRefPubMedGoogle Scholar
  42. Lee CS, Cho HJ, Jeong YJ, Shin JM, Park KK, Park YY, Bae YS, Chung IK, Kim M, Kim CH, Jin F, Chang HW, Chang YC (2015) Isothiocyanates inhibit the invasion and migration of C6 glioma cells by blocking FAK/JNK-mediated MMP-9 expression. Oncol Rep 34(6):2901–2908CrossRefPubMedGoogle Scholar
  43. Li Y, Zhang T, Korkaya H, Liu S, Lee HF, Newman B, Yu Y, Clouthier SG, Schwartz SJ, Wicha MS, Sun D (2010) Sulforaphane, a dietary component of broccoli/broccoli sprouts, inhibits breast cancer stem cells. Clin Cancer Res 16(9):2580–2590CrossRefPubMedPubMedCentralGoogle Scholar
  44. Licznerska B, Szaefer H, Matuszak I, Murias M, Baer-Dubowska W (2015) Modulating potential of L-sulforaphane in the expression of cytochrome p450 to identify potential targets for breast cancer chemoprevention and therapy using breast cell lines. Phytother Res 29(1):93–99CrossRefPubMedGoogle Scholar
  45. Luang-In V, Narbad A, Nueno-Palop C, Mithen R, Bennett M, Rossiter JT (2014) The metabolism of methylsulfinylalkyl- and methylthioalkyl-glucosinolates by a selection of human gut bacteria. Mol Nutr Food Res 58(4):875–883CrossRefPubMedGoogle Scholar
  46. Matusheski NV, Jeffery EH (2001) Comparison of the bioactivity of two glucoraphanin hydrolysis products found in broccoli, sulforaphane and sulforaphane nitrile. J Agric Food Chem 49(12):5743–5749CrossRefPubMedGoogle Scholar
  47. Mokhtari RB, Kumar S, Islam SS, Yazdanpanah M, Adeli K, Cutz E, Yeger H (2013) Combination of carbonic anhydrase inhibitor, acetazolamide, and sulforaphane, reduces the viability and growth of bronchial carcinoid cell lines. BMC Cancer 13:378CrossRefPubMedPubMedCentralGoogle Scholar
  48. Myzak MC, Dashwood RH (2006) Chemoprotection by sulforaphane: keep one eye beyond Keap1. Cancer Lett 233(2):208–218CrossRefPubMedPubMedCentralGoogle Scholar
  49. Nian H, Delage B, Ho E, Dashwood RH (2009) Modulation of histone deacetylase activity by dietary isothiocyanates and allyl sulfides: studies with sulforaphane and garlic organosulfur compounds. Environ Mol Mutagen 50(3):213–221CrossRefPubMedPubMedCentralGoogle Scholar
  50. Reece JC, Chan YF, Herbert J, Gralow J, Fann JR (2013) Course of depression, mental health service utilization and treatment preferences in women receiving chemotherapy for breast cancer. Gen Hosp Psychiatry 35(4):376–381CrossRefPubMedGoogle Scholar
  51. Rudolf K, Cervinka M, Rudolf E (2014) Sulforaphane-induced apoptosis involves p53 and p38 in melanoma cells. Apoptosis 19(4):734–747CrossRefPubMedGoogle Scholar
  52. Shapiro TA, Fahey JW, Wade KL, Stephenson KK, Talalay P (2001) Chemoprotective glucosinolates and isothiocyanates of broccoli sprouts: metabolism and excretion in humans. Cancer Epidemiol Biomark Prev 10(5):501–508Google Scholar
  53. Shapiro TA, Fahey JW, Dinkova-Kostova AT, Holtzclaw WD, Stephenson KK, Wade KL, Ye L, Ye L, Talalay P (2006) Safety, tolerance, and metabolism of broccoli sprout glucosinolates and isothiocyanates: a clinical phase I study. Nutr Cancer 55(1):53–62CrossRefPubMedGoogle Scholar
  54. Sheth SH, Johnson DE, Kensler TW, Bauman JE (2015) Chemoprevention targets for tobacco- related head and neck cancer: past lessons and future directions. Oral Oncol 51(6):557–564CrossRefPubMedGoogle Scholar
  55. Shibata A, Nakagawa K, Yamanoi H, Tsuduki T, Sookwong P, Higuchi O, Kimura F, Miyazawa T (2010) Sulforaphane suppresses ultraviolet B-induced inflammation in HaCaT keratinocytes and HR-1 hairless mice. J Nutr Biochem 21(8):702–709CrossRefPubMedGoogle Scholar
  56. Singh AV, Xiao D, Lew KL, Dhir R, Singh SV (2004) Sulforaphane induces caspase-mediated apoptosis in cultured PC-3 human prostate cancer cells and retards growth of PC-3 xenografts in vivo. Carcinogenesis 25(1):83–90CrossRefPubMedGoogle Scholar
  57. Singh A, Sharma N, Ghosh M, Park Y, Jeong D (2017) Emerging importance of dietary phytochemicals in fight against cancer: role in targeting cancer stem cells. Crit Rev Food Sci Nutr 57(16):3449–3463CrossRefPubMedGoogle Scholar
  58. Srivastava VK, Hill DC (1974) Glucosinolate hydrolytic products given by Sinapis alba, and Brassica napus thioglucosidases. Phytochemistry 13:1043–1046CrossRefGoogle Scholar
  59. Srivastava RK, Kurzrock R, Shankar S (2010) MS-275 sensitizes TRAIL-resistant breast cancer cells, inhibits angiogenesis and metastasis, and reverses epithelial-mesenchymal transition in vivo. Mol Cancer Ther 9(12):3254–3266CrossRefPubMedGoogle Scholar
  60. Thejass P, Kuttan G (2006) Antimetastatic activity of Sulforaphane. Life Sci 78(26):3043–3050CrossRefPubMedGoogle Scholar
  61. Tortorella SM, Royce SG, Licciardi PB15V, Karagiannis TC (2015) Dietary Sulforaphane in cancer chemoprevention: the role of epigenetic regulation and HDAC inhibition. Antioxid Redox Signal 22(16):1382–1424CrossRefPubMedPubMedCentralGoogle Scholar
  62. Tsuchiya Y, Endo Y, Sato H, Okada Y, Mai M, Sasaki T, Seiki M (1994) Expression of type-IV collagenases in human tumor cell lines that can form liver colonies in chick embryos. Int J Cancer 56(1):46–51CrossRefPubMedGoogle Scholar
  63. Turrini E, Ferruzzi L, Fimognari C (2014) Natural compounds to overcome cancer chemoresistance: toxicological and clinical issues. Expert Opin Drug Metab Toxicol 10(12):1677–1690CrossRefPubMedGoogle Scholar
  64. Vyas AR, Moura MB, Hahm ER, Singh KB, Singh SV (2016) Sulforaphane inhibits c-Myc-mediated prostate cancer stem-like traits. J Cell Biochem 117(11):2482–2495CrossRefPubMedPubMedCentralGoogle Scholar
  65. Wu QJ, Yang Y, Vogtmann E, Wang J, Han LH, Li HL, Xiang YB (2013) Cruciferous vegetables intake and the risk of colorectal cancer: a meta-analysis of observational studies. Ann Oncol 24(4):1079–1087CrossRefPubMedGoogle Scholar
  66. Wu S, Gao Q, Zhao P, Gao Y, Xi Y, Wang X, Liang Y, Shi H, Ma Y (2016) Sulforaphane produces antidepressant- and anxiolytic-like effects in adult mice. Behav Brain Res 301:55–62CrossRefPubMedGoogle Scholar
  67. Xu T, Ren D, Sun X, Yang G (2012) Dual roles of sulforaphane in cancer treatment. Anti Cancer Agents Med Chem 12(9):1132–1142CrossRefGoogle Scholar
  68. Youn HS, Kim YS, Park ZY, Kim SY, Choi NY, Joung SM, Seo JA, Lim KM, Kwak MK, Hwang DH, Lee JY (2010) Sulforaphane suppresses oligomerization of TLR4 in a thiol- dependent manner. J Immunol 184(1):411–419CrossRefPubMedGoogle Scholar
  69. Yoxall V, Kentish P, Coldham N, Kuhnert N, Sauer MJ, Ioannides C (2005) Modulation of hepatic cytochromes P450 and phase II enzymes by dietary doses of sulforaphane in rats: implications for its chemopreventive activity. Int J Cancer 117(3):356–362CrossRefPubMedGoogle Scholar
  70. Yuan JM, Gago-Dominguez M, Castelao JE, Hankin JH, Ross RK, Yu MC (1998) Cruciferous vegetables in relation to renal cell carcinoma. Int J Cancer 77(2):211–216CrossRefPubMedGoogle Scholar
  71. Yue GG-L, Kwok H-F, Lee JK-M, Jiang L, Wong EC-W, Gao S, Wong H-L, Li L, Chan K-M, Leung P-C, Fung K-P, Zuo Z, Lau CB-S (2016) Combined therapy using bevacizumab and turmeric ethanolic extract (with absorbable curcumin) exhibited beneficial efficacy in colon cancer mice. Pharmacol Res 111:43–57Google Scholar
  72. Zhang Y, Talalay P, Cho CG, Posner GH (1992) A major inducer of anticarcinogenic protective enzymes from broccoli: isolation and elucidation of structure. Proc Natl Acad Sci U S A 89(6):2399–2403CrossRefPubMedPubMedCentralGoogle Scholar
  73. Zhang SM, Hunter DJ, Rosner BA, Giovannucci EL, Colditz GA, Speizer FE, Willett WC (2009) Intakes of fruits, vegetables, and related nutrients and the risk of non-Hodgkin's lymphoma among women. Cancer Epidemiol Biomark Prev 9(5):477–485Google Scholar
  74. Zhang Z, Atwell LL, Farris PE, Ho E, Shannon J (2016a) Associations between cruciferous vegetable intake and selected biomarkers among women scheduled for breast biopsies. Public Health Nutr 7:1288–1295CrossRefGoogle Scholar
  75. Zhang Z, Li C, Shang L, Zhang Y, Zou R, Zhan Y, Zou R, Zhan Y, Bi B (2016b) Sulforaphane induces apoptosis and inhibits invasion in U251MG glioblastoma cells. Spring 5:235CrossRefGoogle Scholar
  76. Zuryn A, Litwiniec A, Safiejko-Mroczka B, Klimaszewska-Wisniewska A, Gagat M, Krajewski A, Gackowska L, Grzanka D (2016) The effect of sulforaphane on the cell cycle, apoptosis and expression of cyclin D1 and p21 in the A549 non-small cell lung cancer cell line. Int J Oncol 48(6):2521–2533CrossRefPubMedGoogle Scholar

Copyright information

© The International CCN Society 2017

Authors and Affiliations

  • Reza Bayat Mokhtari
    • 1
    • 2
    • 3
    • 4
    Email author
  • Narges Baluch
    • 5
  • Tina S. Homayouni
    • 1
  • Evgeniya Morgatskaya
    • 1
  • Sushil Kumar
    • 1
  • Parandis Kazemi
    • 1
  • Herman Yeger
    • 1
    • 2
    • 3
    • 4
    Email author
  1. 1.Developmental and Stem Cell BiologyThe Hospital for Sick ChildrenTorontoCanada
  2. 2.Department of Paediatric Laboratory MedicineThe Hospital for Sick ChildrenTorontoCanada
  3. 3.Institute of Medical ScienceUniversity of TorontoTorontoCanada
  4. 4.Sickkids Research Center, Peter Gilgan CentreTorontoCanada
  5. 5.Department of Pathology and Molecular Medicine, Richardson LaboratoryQueen’s UniversityKingstonCanada

Personalised recommendations