Skip to main content
Log in

The pivotal role of CCN2 in mammalian palatogenesis

  • RESEARCH ARTICLE
  • Published:
Journal of Cell Communication and Signaling Aims and scope

Abstract

Mammalian palatogenesis is a complex process involving a temporally and spatially regulated myriad of factors. Together these factors control the 3 vital processes of proliferation, elevation and fusion of the developing palate. In this study, we show for the first time the unequivocally vital role of CCN2 in development of the mammalian palate. We utilized CCN2 knockout (KO) mice and cranial neural crest derived mesenchymal cells from these CCN2 KO mice to investigate the 3 processes crucial to normal palatogenesis. Similar to previously published reports, the absence of CCN2 inhibits proliferation of cells in the palate specifically at the G1/S transition. Absence of CCN2 also inhibited palatal shelf elevation from the vertical to horizontal position. CCN2 KO mesenchymal cells demonstrated deficiencies in adhesion and spreading owing to an inability to activate Rac1 and RhoA. On the contrary, CCN2 KO mesenchymal cells exhibited increased rates of migration compared to WT cells. The addition of exogenous CCN2 to KO mesenchymal cells restored their ability to spread normally on fibronectin. Finally, utilizing an organ culture model we show that the palatal shelves of the CCN2 KO mice demonstrate an inability to fuse when apposed. Together, these data signify that CCN2 plays an indispensible role in normal development of the mammalian palate and warrants additional studies to determine the precise mechanism(s) responsible for these effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

CCN2:

Connective tissue growth factor

WT:

Wild type

KO:

Knockout

CL[P]:

Cleft lip with or without palate involvement

CP:

Cleft palate only

E:

Embryonic day of development

P:

Days after birth

TGF-β:

Transforming growth factor beta

FGF:

Fibroblast growth factor

BMP:

Bone morphogenetic protein

MEPM:

Mouse embryonic palate mesenchymal

DMEM:

Dulbecco’s modified eagle medium

FBS:

Fetal bovine serum

PFA:

Paraformaldehyde

PTA:

Phosphotungstic acid

ECM:

Extracellular matrix

MEE:

Medial edge epithelium

FN:

Fibronectin

References

  • Abreu JG, Ketpura NI, Reversade B, De Robertis EM (2002) Connective-tissue growth factor (CTGF) modulates cell signalling by BMP and TGF-beta. Nat Cell Biol 4:599–604

    CAS  PubMed  PubMed Central  Google Scholar 

  • Aoyama E, Kubota S, Takigawa M (2012) CCN2/CTGF binds to fibroblast growth factor receptor 2 and modulates its signaling. FEBS Lett 586:4270–4275

    Article  CAS  PubMed  Google Scholar 

  • Arosarena OA (2007) Cleft lip and palate. Otolaryngol Clin N Am 40:27–60, vi

    Article  Google Scholar 

  • Battula VL, Chen Y, Cabreira Mda G, Ruvolo V, Wang Z, Ma W, Konoplev S, Shpall E, Lyons K, Strunk D, Bueso-Ramos C, Davis RE, Konopleva M, Andreeff M (2013) Connective tissue growth factor regulates adipocyte differentiation of mesenchymal stromal cells and facilitates leukemia bone marrow engraftment. Blood 122:357–366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Black SA Jr, Trackman PC (2008) Transforming growth factor-beta1 (TGFbeta1) stimulates connective tissue growth factor (CCN2/CTGF) expression in human gingival fibroblasts through a RhoA-independent, Rac1/Cdc42-dependent mechanism: statins with forskolin block TGFbeta1-induced CCN2/CTGF expression. J Biol Chem 283:10835–10847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bush JO, Jiang R (2012) Palatogenesis: morphogenetic and molecular mechanisms of secondary palate development. Development 139:231–243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bush RA, Wei LL, Sieving PA (2015) Convergence of human genetics and animal studies: gene therapy for x-linked retinoschisis. Cold Spring Harb Perspect Med 5:a017368

    Article  PubMed  Google Scholar 

  • Carey DJ (1997) Syndecans: multifunctional cell-surface co-receptors. Biochem J 327(Pt 1):1–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Abraham DJ, Shi-Wen X, Pearson JD, Black CM, Lyons KM, Leask A (2004) CCN2 (connective tissue growth factor) promotes fibroblast adhesion to fibronectin. Mol Biol Cell 15:5635–5646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crawford LA, Guney MA, Oh YA, Deyoung RA, Valenzuela DM, Murphy AJ, Yancopoulos GD, Lyons KM, Brigstock DR, Economides A, Gannon M (2009) Connective tissue growth factor (CTGF) inactivation leads to defects in islet cell lineage allocation and beta-cell proliferation during embryogenesis. Mol Endocrinol 23:324–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cui XM, Shuler CF (2000) The TGF-beta type III receptor is localized to the medial edge epithelium during palatal fusion. Int J Dev Biol 44:397–402

    CAS  PubMed  Google Scholar 

  • Daub H, Gevaert K, Vandekerckhove J, Sobel A, Hall A (2001) Rac/Cdc42 and p65PAK regulate the microtubule-destabilizing protein stathmin through phosphorylation at serine 16. J Biol Chem 276:1677–1680

    Article  CAS  PubMed  Google Scholar 

  • Ferguson MW (1978) Palatal shelf elevation in the Wistar rat fetus. J Anat 125:555–577

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gao R, Ball DK, Perbal B, Brigstock DR (2004) Connective tissue growth factor induces c-fos gene activation and cell proliferation through p44/42 MAP kinase in primary rat hepatic stellate cells. J Hepatol 40:431–438

    Article  CAS  PubMed  Google Scholar 

  • Gao R, Brigstock DR (2004) Connective tissue growth factor (CCN2) induces adhesion of rat activated hepatic stellate cells by binding of its C-terminal domain to integrin alpha(v)beta(3) and heparan sulfate proteoglycan. J Biol Chem 279:8848–8855

    Article  CAS  PubMed  Google Scholar 

  • Gao R, Brigstock DR (2006) A novel integrin alpha5beta1 binding domain in module 4 of connective tissue growth factor (CCN2/CTGF) promotes adhesion and migration of activated pancreatic stellate cells. Gut 55:856–862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gritli-Linde A (2008) The etiopathogenesis of cleft lip and cleft palate: usefulness and caveats of mouse models. Curr Top Dev Biol 84:37–138

    Article  CAS  PubMed  Google Scholar 

  • Guo F, Debidda M, Yang L, Williams DA, Zheng Y (2006) Genetic deletion of Rac1 GTPase reveals its critical role in actin stress fiber formation and focal adhesion complex assembly. J Biol Chem 281:18652–18659

    Article  CAS  PubMed  Google Scholar 

  • Hendesi H, Barbe MF, Safadi FF, Monroy MA, Popoff SN (2015) Integrin mediated adhesion of osteoblasts to connective tissue growth factor (CTGF/CCN2) induces cytoskeleton reorganization and cell differentiation. PLoS One 10, e0115325

    Article  PubMed  PubMed Central  Google Scholar 

  • Hill CR, Jacobs BH, Brown CB, Barnett JV, Goudy SL (2015) Type III transforming growth factor beta receptor regulates vascular and osteoblast development during palatogenesis. Dev Dyn 244:122–133

    Article  CAS  PubMed  Google Scholar 

  • Hoshijima M, Hattori T, Inoue M, Araki D, Hanagata H, Miyauchi A, Takigawa M (2006) CT domain of CCN2/CTGF directly interacts with fibronectin and enhances cell adhesion of chondrocytes through integrin alpha5beta1. FEBS Lett 580:1376–1382

    Article  CAS  PubMed  Google Scholar 

  • Ivkovic S, Yoon BS, Popoff SN, Safadi FF, Libuda DE, Stephenson RC, Daluiski A, Lyons KM (2003) Connective tissue growth factor coordinates chondrogenesis and angiogenesis during skeletal development. Development 130:2779–2791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim S, Lewis AE, Singh V, Ma X, Adelstein R, Bush JO (2015) Convergence and extrusion are required for normal fusion of the mammalian secondary palate. PLoS Biol 13, e1002122

    Article  PubMed  PubMed Central  Google Scholar 

  • Kirschner RE, LaRossa D (2000) Cleft lip and palate. Otolaryngol Clin N Am 33:1191–1215, v-vi

    Article  CAS  Google Scholar 

  • Lambi AG, Pankratz TL, Mundy C, Gannon M, Barbe MF, Richtsmeier JT, Popoff SN (2012) The skeletal site-specific role of connective tissue growth factor in prenatal osteogenesis. Dev Dyn 241:1944–1959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lane J, Yumoto K, Azhar M, Ninomiya-Tsuji J, Inagaki M, Hu Y, Deng CX, Kim J, Mishina Y, Kaartinen V (2015) Tak1, Smad4 and Trim33 redundantly mediate TGF-beta3 signaling during palate development. Dev Biol 398:231–241

    Article  CAS  PubMed  Google Scholar 

  • Levi B, James AW, Nelson ER, Brugmann SA, Sorkin M, Manu A, Longaker MT (2011) Role of Indian hedgehog signaling in palatal osteogenesis. Plast Reconstr Surg 127:1182–1190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li SW, Prockop DJ, Helminen H, Fassler R, Lapvetelainen T, Kiraly K, Peltarri A, Arokoski J, Lui H, Arita M et al (1995) Transgenic mice with targeted inactivation of the Col2 alpha 1 gene for collagen II develop a skeleton with membranous and periosteal bone but no endochondral bone. Genes Dev 9:2821–2830

    Article  CAS  PubMed  Google Scholar 

  • Lin BR, Chang CC, Che TF, Chen ST, Chen RJ, Yang CY, Jeng YM, Liang JT, Lee PH, Chang KJ, Chau YP, Kuo ML (2005) Connective tissue growth factor inhibits metastasis and acts as an independent prognostic marker in colorectal cancer. Gastroenterol 128:9–23

    Article  CAS  Google Scholar 

  • Machacek M, Hodgson L, Welch C, Elliott H, Pertz O, Nalbant P, Abell A, Johnson GL, Hahn KM, Danuser G (2009) Coordination of Rho GTPase activities during cell protrusion. Nature 461:99–103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mao Z, Ma X, Rong Y, Cui L, Wang X, Wu W, Zhang J, Jin D (2011) Connective tissue growth factor enhances the migration of gastric cancer through downregulation of E-cadherin via the NF-kappaB pathway. Cancer Sci 102:104–110

    Article  CAS  PubMed  Google Scholar 

  • Matsumura K, Taketomi T, Yoshizaki K, Arai S, Sanui T, Yoshiga D, Yoshimura A, Nakamura S (2011) Sprouty2 controls proliferation of palate mesenchymal cells via fibroblast growth factor signaling. Biochem Biophys Res Commun 404:1076–1082

    Article  CAS  PubMed  Google Scholar 

  • McBeath R, Pirone DM, Nelson CM, Bhadriraju K, Chen CS (2004) Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev Cell 6:483–495

    Article  CAS  PubMed  Google Scholar 

  • Mishina Y, Snider TN (2014) Neural crest cell signaling pathways critical to cranial bone development and pathology. Exp Cell Res 325:138–147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mundy C, Gannon M, Popoff SN (2014) Connective tissue growth factor (CTGF/CCN2) negatively regulates BMP-2 induced osteoblast differentiation and signaling. J Cell Physiol 229:672–681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nishida T, Kawaki H, Baxter RM, Deyoung RA, Takigawa M, Lyons KM (2007) CCN2 (Connective Tissue Growth Factor) is essential for extracellular matrix production and integrin signaling in chondrocytes. J Cell Commun Signal 1:45–58

    Article  PubMed  PubMed Central  Google Scholar 

  • Parada C, Chai Y (2012) Roles of BMP signaling pathway in lip and palate development. Front Oral Biol 16:60–70

    Article  PubMed  PubMed Central  Google Scholar 

  • Parada C, Li J, Iwata J, Suzuki A, Chai Y (2013) CTGF mediates Smad-dependent transforming growth factor beta signaling to regulate mesenchymal cell proliferation during palate development. Mol Cell Biol 33:3482–3493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rayego-Mateos S, Rodrigues-Diez R, Morgado-Pascual JL, Rodrigues Diez RR, Mas S, Lavoz C, Alique M, Pato J, Keri G, Ortiz A, Egido J, Ruiz-Ortega M (2013) Connective tissue growth factor is a new ligand of epidermal growth factor receptor. J Mol Biol 5:323–335

    CAS  Google Scholar 

  • Rice R, Connor E, Rice DP (2006) Expression patterns of Hedgehog signalling pathway members during mouse palate development. Gene Expr Patterns 6:206–212

    Article  CAS  PubMed  Google Scholar 

  • Scarpa E, Mayor R (2016) Collective cell migration in development. J Cell Biol 212:143–155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shimo T, Nakanishi T, Nishida T, Asano M, Kanyama M, Kuboki T, Tamatani T, Tezuka K, Takemura M, Matsumura T, Takigawa M (1999) Connective tissue growth factor induces the proliferation, migration, and tube formation of vascular endothelial cells in vitro, and angiogenesis in vivo. J Biochem 126:137–145

    Article  CAS  PubMed  Google Scholar 

  • Smith TM, Lozanoff S, Iyyanar PP, Nazarali AJ (2012) Molecular signaling along the anterior-posterior axis of early palate development. Front Physiol 3:488

    Article  PubMed  Google Scholar 

  • Tsai HC, Su HL, Huang CY, Fong YC, Hsu CJ, Tang CH (2014) CTGF increases matrix metalloproteinases expression and subsequently promotes tumor metastasis in human osteosarcoma through down-regulating miR-519d. Oncotarget 5:3800–3812

    Article  PubMed  PubMed Central  Google Scholar 

  • Xiu M, Liu YH, Brigstock DR, He FH, Zhang RJ, Gao RP (2012) Connective tissue growth factor is overexpressed in human hepatocellular carcinoma and promotes cell invasion and growth. World J Gastroenterol 18:7070–7078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang LT, Kaartinen V (2007) Tgfb1 expressed in the Tgfb3 locus partially rescues the cleft palate phenotype of Tgfb3 null mutants. Dev Biol 312:384–395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshida T, Vivatbutsiri P, Morriss-Kay G, Saga Y, Iseki S (2008) Cell lineage in mammalian craniofacial mesenchyme. Mech Dev 125:797–808

    Article  CAS  PubMed  Google Scholar 

  • Yumoto K, Thomas PS, Lane J, Matsuzaki K, Inagaki M, Ninomiya-Tsuji J, Scott GJ, Ray MK, Ishii M, Maxson R, Mishina Y, Kaartinen V (2013) TGF-beta-activated kinase 1 (Tak1) mediates agonist-induced Smad activation and linker region phosphorylation in embryonic craniofacial neural crest-derived cells. J Biol Chem 288:13467–13480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhen Y, Ye Y, Yu X, Mai C, Zhou Y, Chen Y, Yang H, Lyu X, Song Y, Wu Q, Fu Q, Zhao M, Hua S, Wang H, Liu Z, Zhang Y, Fang W (2014) Reduced CTGF expression promotes cell growth, migration, and invasion in nasopharyngeal carcinoma. PLoS One 8, e64976

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Authors would like to thank Dr. Alex G. Lambi from the University of California, Los Angeles for his guidance and intellectual feedback. Authors would also like to thank Mamta Amin for her technical contributions and assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven N. Popoff.

Ethics declarations

Conflict of interest

All authors declare that there are no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tarr, J.T., Visser, T.G., Moon, J.E. et al. The pivotal role of CCN2 in mammalian palatogenesis. J. Cell Commun. Signal. 11, 25–37 (2017). https://doi.org/10.1007/s12079-016-0360-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12079-016-0360-8

Keywords

Navigation