Advertisement

Journal of Cell Communication and Signaling

, Volume 10, Issue 4, pp 315–330 | Cite as

Update on the role of molecular factors and fibroblasts in the pathogenesis of Dupuytren’s disease

  • Massimiliano Tripoli
  • Adriana Cordova
  • Francesco Moschella
Review

Abstract

The mechanism by which the fibroblast is able to trigger palmar fibromatosis is still not yet fully understood. It would appear certain that the “abnormal” fibroblasts continuously synthesise profibrotic cytokines which are able to determine the activation to myofibroblasts, to stimulate them to the further proliferation and synthesis of other cytokines, to modify the cells’ differentiation and ultrastructural characteristics, as well as the production of matrix and other proteins. Several fibroblast growth factors have been suggested to be responsible of an abnormal cell activation with an aberrantly elevated collagen synthesis and extracellular deposition in Dupuytren’s disease, as TGF-Beta, TNF-Alfa, PDGF, GM-CSF, free radicals, metalloproteinases, sex hormones, gene modified expression, mechanical stimulation. The Authors review the current state of knowledge in the field, by analyzing the role of these cytokines in the palmar fibromatosis.

Keywords

Cytokines Fibroblast Dupuytren’s disease 

Notes

Compliance with ethical standards

Funding

None.

Conflicts of interest

None declared.

Ethical approval

Not required.

Financial disclosure

The authors disclose any financial and personal relationships with other people or organisations that could inappropriately influence (bias) their work.

References

  1. Alman BA, Greel DA, Ruby LK, Goldberg MJ, Wolfe HJ (1996) Regulation of proliferation and platelet-derived growth factor expression in palmar fibromatosis (Dupuytren contracture) by mechanical strain. J Orthop Res 14(5):722–728PubMedCrossRefGoogle Scholar
  2. Arora R, Kaiser P, Kastenberger TJ, Schmiedle G, Erhart S, Gabl M (2016) Injectable collagenase Clostridium histolyticum as a nonsurgical treatment for Dupuytren’s disease. Oper Orthop Traumatol 28:30–37PubMedCrossRefGoogle Scholar
  3. Augoff K, Ratajczak K, Gosk J, Tabola R, Rutowski R (2006) Gelatinase A activity in Dupuytren’s disease. J Hand Surg [Am] 31(10):1635–1639CrossRefGoogle Scholar
  4. Badalamente MA, Sampson SP, Hurst LC, Dowd A, Miyasaka K (1996) The role of transforming growth factor beta in Dupuytren’s disease. J Hand Surg [Am] 21(2):210–215CrossRefGoogle Scholar
  5. Bailey AJ, Tarlton JF, Van der Stappen J, Sims TJ, Messina A (1994) The continuous elongation technique for severe Dupuytren’s disease: a biochemical mechanism. J Hand Surg [Am] 19:522–527CrossRefGoogle Scholar
  6. Bayat A, Alansar A, Hajeer HA, Shah M, Watson JS, Stanley JK, Ferguson MW, Ollier WE (2002a) Genetic susceptibility in Dupuytren’s disease: lack of association of a novel transforming growth factor B2 polymorphism in Dupuytren’s disease. J Hand Surg (Br) 27(1):47–49CrossRefGoogle Scholar
  7. Bayat A, Watson JS, Stanley JK, Alansari A, Shah M, Ferguson MW, Ollier WE (2002b) Genetic susceptibility in Dupuytren’s disease. TGF-beta1 polymorphisms and Dupuytren’s disease. J Bone Joint Surg (Br) 84(2):211–215CrossRefGoogle Scholar
  8. Bayat A, Stanley JK, Watson JS, Ferguson MW, Ollier WE (2003) Genetic susceptibility to Dupuytren’s disease: transforming growth factor beta receptor (TGFbetaR) gene polymorphisms and Dupuytren’s disease. Br J Plast Surg 56(4):328–333PubMedCrossRefGoogle Scholar
  9. Bazin S, Le Lous M, VC D (1980) Biochemistry and histology of the connective tissue of Dupuytren’s disease lesion. Eur J Clin Invest 10:166–171CrossRefGoogle Scholar
  10. Bernard M, Dieudé M, Yang B, Hamelin K, Underwood K, Hébert MJ (2014) Autophagy fosters myofibroblast differentiation through MTORC2 activation and downstream upregulation of CTGF. Autophagy 10(12):2193–2207PubMedCrossRefGoogle Scholar
  11. Berndt A, Kosmehl H, Katenkamp D, Tauchmann V (1994) Appearance of the myofibroblastic phenotype in Dupuytren’s disease is associated with a fibronectin, laminin, collagen type IV and tenascin extracellular matrix. Pathobiology 62:55–58PubMedCrossRefGoogle Scholar
  12. Bertheim U, Hellström S (1994) The distribution of hyaluronan in human skin and mature, hypertrophic meloi scars. Br J Plast Surg 47:483–489PubMedCrossRefGoogle Scholar
  13. Bisson MA, McGrouther DA, Mudera V, Grobbelaar AO (2003) The different characteristics of Dupuytren’s disease fibroblasts derived from either nodule or cord: expression of alpha-smooth muscle actin and the response to stimulation by TGF-beta1. J Hand Surg (Br) 28:351–356CrossRefGoogle Scholar
  14. Bisson MA, Mudera V, McGrouther DA, Grobbelaar AO (2004) The contractile properties and responses to tensional loading of Dupuytren’s disease-derived fibroblasts are altered: a cause of the contracture? Plast Reconstr Surg 113(2):611–621PubMedCrossRefGoogle Scholar
  15. Bisson MA, Beckett KS, McGrouther DA, Grobbelaar AO, Mudera V (2009) Transforming growth factor-beta1 stimulation enhances Dupuytren’s fibroblast contraction in response to uniaxial mechanical load within a 3-dimensional collagen gel. J Hand Surg [Am] 34(6):1102–1110CrossRefGoogle Scholar
  16. Bowley E, O’Gorman DB, Gan BS (2007) Beta-catenin signaling in fibroproliferative disease. J Surg Res 138:141–150PubMedCrossRefGoogle Scholar
  17. Brenner P, Grassler N, Berger A (1994) Epidemiology of Dupuytren’s disease. In: Pathobiochemistry and clinical management. Springer, Berlin, pp 244–254Google Scholar
  18. Brenner P, Sachse C, Reichert B, Berger A (1996) Expression von diversen monoklonalen anticörpern im knotenund strangstadium des morbus Dupuytren. Hand-Chir Mikrochir Plast Chir 28:322–327Google Scholar
  19. Brickley Parson D, Glimcher MJ, Albin R (1981) Biochemical changes in the collagen of the palmar fascia in patients with Dupuytren’s disease. J Bone Joint Surg 63(5):787–797CrossRefGoogle Scholar
  20. Brown RA, Prajapati R, McGrouther DA, Yannas IV, Eastwood M (1998) Tensional homeostasis in dermal fibroblasts: mechanical responses to mechanical loading in three-dimensional substrates. J Cell Physiol 175:323–332PubMedCrossRefGoogle Scholar
  21. Bruno G, Concetti F, Pertici I, Japtok L, Bernacchioni C, Donati C, Bruni P (2015) CTGF/CCN2 exerts profibrotic action in myoblasts via the up-regulation of sphingosine kinase-1/S1P3 signaling axis: implications in the action mechanism of TGFβ. Biochim Biophys Acta 1851:194–202PubMedCrossRefGoogle Scholar
  22. Bujak M, Ratkaj I, Markova-Car E, Jurišić D, Horvatić A, Vučinić S, Lerga J, Baus-Lončar M, Pavelić K, Kraljević PS (2015) Inflammatory gene expression upon TGF-β1-induced p38 activation in primary Dupuytren’s disease fibroblasts. Front Mol Biosci 8:2–68Google Scholar
  23. Cordova A, Tripoli M, Corradino B, Napoli N, Moschella M (2005) Dupuytren’s contracture: an update review of biomolecular aspects and therapeutic perspectives. J Hand Surg (Br) 30(6):557–562CrossRefGoogle Scholar
  24. Dave SA, Banducci DR, Graham WP 3rd, Allison M, Ehrlich HP (2001) Differences in alpha smooth muscle actin expression between fibroblasts derived from Dupuytren’s nodules or cords. Exp Mol Pathol 71:147–155PubMedCrossRefGoogle Scholar
  25. Dawes J, Pepper DS (1992) Human vascular endothelial cell catabolise exogenous glycosaminoglycans by a novel route. Thromb Haemost 67:468–472PubMedGoogle Scholar
  26. Degreef I, Steeno P, De Smet L (2008) A survey of clinical manifestations and risk factors in women with Dupuytren’s disease. Acta Orthop Belg 74(4):456–460PubMedGoogle Scholar
  27. Degreef I, De Smet L, Sciot R, Cassiman JJ, Tejpar S (2009) Beta-catenin overexpression in Dupuytren’s disease is unrelated to disease recurrence. Clin Orthop Relat Res 467(3):838–845PubMedCrossRefGoogle Scholar
  28. Endo M, Yamamoto R, Namiki O, Satake S, Yosizawa Z (1979) Comparison of glycosaminoglycans (GAG) in normal human plasma and urine. Tohoku J Exp Med 128:89–99PubMedCrossRefGoogle Scholar
  29. Frohlich C, Albrechtsen R, Dyrskjot L, Rudkjaer L, Orntoft TF, Wewer UM (2006) Molecular profiling of ADAM12 in human bladder cancer. Clin Cancer Res 12:7359–7368PubMedCrossRefGoogle Scholar
  30. Gabbiani G, Majno G (1972) Dupuytren’s contracture: fibroblast contraction? an Ultrastructural study. Am J Pathol 66:131–146PubMedPubMedCentralGoogle Scholar
  31. Gabbiani G, Ryan GB, Majno G (1971) Presence of modified fibroblasts in granulation tissue and their possible role in wound contraction. Experimentia 27:549–550CrossRefGoogle Scholar
  32. Gelberman RH, Amiel D, Rudolph RM, Vance RM (1980) Dupuytren’s contracture. An electron microscopic, biochemical and clinical correlative study. J Bone Joint 62:425–432CrossRefGoogle Scholar
  33. Gilpin D, Coleman S, Hall S, Houston A, Karrasch J, Jones N (2010) Injectable collagenase clostridium histolyticum: a new nonsurgical treatment for Dupuytren’s disease. J Hand Surg [Am] 35:2027–2038CrossRefGoogle Scholar
  34. Gurr E, Pallasch G, Tunn S, Tamm C, Delbrück A (1985) high performance liquid chromatographic assay of disaccharides and oligosaccharides produced by the digestion of glycosaminoglycans with chondroitin sulphate lyases. J Clin Chem Clin Biochem 23:77–87PubMedGoogle Scholar
  35. Hindocha S, Iqbal SA, Farhatullah S, Paus R, Bayat A (2011) Characterization of stem cells in Dupuytren’s disease. Br J Surg 98(2):308–315PubMedCrossRefGoogle Scholar
  36. Hoch J, Felouzis E, Meyer-Walters O, Nebe B, Notbohm H (2002) Fibronectin-chemotaxis and collagen-gel contraction of the palmar aponeurosis in morbus dupuytren. Handchir Mikrochir Plast Chir 34:292–297PubMedCrossRefGoogle Scholar
  37. Howard JC, Varallo VM, Ross DC, Roth JH, Faber KJ, Alman B, Gan BS (2003) Elevated levels of beta-catenin and fibronectin in three-dimensional collagen cultures of Dupuytren’s disease cells are regulated by tension in vitro. BMC Musculoskelet Disord 16:16–21CrossRefGoogle Scholar
  38. Howard JC, Varallo VM, Ross DC, Faber KJ, Roth JH, Seney S, Gan BS (2004) Wound healing-associated proteins Hsp47 and fibronectin are elevated in Dupuytren’s contracture. J Surg Res 117(2):232–238PubMedCrossRefGoogle Scholar
  39. Igarashi A, Nashiro K, Kikuchi K, Ihn H, Fujimoto M, Grotendorst GR, Takehara K (1996) Connective tissue growth factor gene expression in tissue sections from localized scleroderma, keloid, and other fibrotic skin disorders. J Invest Dermatol 106:729–733PubMedCrossRefGoogle Scholar
  40. Johnston P, Chojnowski AJ, Davidson RK, Riley GP, Donell ST, Clark IM (2007) A complete expression profile of matrix-degrading metalloproteinases in Dupuytren’s disease. J Hand Surg [Am] 32(3):343–351CrossRefGoogle Scholar
  41. Johnston P, Larson D, Clark IM, Chojnowski AJ (2008) Metalloproteinase gene expression correlates with clinical outcome in Dupuytren’s disease. J Hand Surg [Am] 33(7):1160–1167CrossRefGoogle Scholar
  42. Karlson P (1998) Proteoglykane. In: Karlson P (ed) Kurzes lehrbuch der biochemie für mediziner und naturwissenschaftler. Thieme, Stuttgart, pp 253–255Google Scholar
  43. Kloen P, Jennings CL, Gebhardt MC, Springfield DS, Mankin HJ (1995) Transforming growth factor-beta: possible roles in Dupuytren’s contracture. J Hand Surg [Am] 20:101–108CrossRefGoogle Scholar
  44. Komatsu I, Bond J, Selim A, Tomasek JJ, Levin LS, Levinson H (2010) Dupuytren's fibroblast contractility by sphingosine-1-phosphate is mediated through non-muscle myosin II. J Hand Surg [Am] 35(10):1580–1588CrossRefGoogle Scholar
  45. Koźma EM, Głowacki A, Olczyk K, Ciecierska M (2007) Dermatan sulfate remodeling associated with advanced Dupuytren’s contracture. Acta Biochim Pol 54(4):821–830PubMedGoogle Scholar
  46. Koźma EM, Wisowski G, Olczyk K (2009) Platelet derived growth factor BB is a ligand for dermatan sulfate chain(s) of small matrix proteoglycans from normal and fibrosis affected fascia. Biochimie 91(11):1394–1404PubMedCrossRefGoogle Scholar
  47. Kraljević Pavelić S, Bratulic S, Hock K, Jurisic D, Hranjec M, Karminski-Zamola G, Zinic B, Bujak M, Pavelic K (2009a) Screening of potential prodrugs on cells derived from Dupuytren’s disease patients. Biomed Pharmacother 63(8):577–585PubMedCrossRefGoogle Scholar
  48. Kraljević Pavelić S, Sedic M, Hock K, Vucinic S, Jurisic D, Gehrig P, Scott M, Schlapbach R, Cacev T, Kapitanovic S, Pavelic K (2009b) An integrated proteomics approach for studying the molecular pathogenesis of Dupuytren’s disease. J Pathol 217(4):524–533PubMedCrossRefGoogle Scholar
  49. Krstic RV (1988) In: Die gewebe des menschen und der säugetiere. Springer, BerlinGoogle Scholar
  50. Kuhn MA, Payne WG, Kierney PC (2001) Cytokine manipulation of explanted Dupuytren’s affected human palmar fascia. Int J Surg Invest 2:443–456Google Scholar
  51. Kuhn MA, Wang X, Payne W, Ko F, Robson MC (2002) Tamoxifen decreases fibroblast function and downregulates TGF-β2 in Dupuytren’s affected palmar fascia. J Surg Res 103:146–152PubMedCrossRefGoogle Scholar
  52. Kveiborg M, Frohlich C, Albrechtsen R, Tischler V, Dietrich N, Holck P, Kronqvist P, Rank F, Mercurio AM, Wewer UM (2005) A role for ADAM12 in breast tumor progression and stromal cell apoptosis. Cancer Res 65:4754–4761PubMedCrossRefGoogle Scholar
  53. Le Pabic H, Bonnier D, Wewer UM, Coutand A, Musso O, Baffet G, Clement B, Theret N (2003) ADAM12 in human liver cancers: TGF-β-regulated expression in stellate cells is associated with matrix remodeling. Hepatology 37:1056–1066PubMedCrossRefGoogle Scholar
  54. Li C, Nguyen Q, Cole WG (2001) Potential treatment for clubfeet based on growth factor blockade. J Pediatr Orthop 21:372–377PubMedGoogle Scholar
  55. Luck JV (1959) Dupuytren’s contracture: a new concept of the pathogenesis correlated with surgical management. J Bone Joint Surg 41:635–664PubMedCrossRefGoogle Scholar
  56. Magro G, Lanteri E, Micali G, Paravizzini G, Travali S, Lanzafame S (1997) Myofibroblasts of palmar fibromatosis co-express transforming growth factor-alpha and epidermal growth factor receptor. J Pathol 181:213–217PubMedCrossRefGoogle Scholar
  57. Majno G (1979) The story of fibroblasts. Am J Surg Pathol 3:535–542PubMedCrossRefGoogle Scholar
  58. Mast BA, Hayness JH, Krummel TM, Diegelmann RF, Cohen KI (1992) In vitro degradation of fetal wound hyaluronic acid results in increase fibroplasias, collagen deposition and neovascularisation. Plast Reconstr Surg 89:503–509PubMedCrossRefGoogle Scholar
  59. Melling M, Karimian-Teherani D, Mostler S, Behnam M, Sobal G, Menzel EJ (2000) Changes of biochemical and biomechanical properties in Dupuytren disease. Arch Pathol Lab Med 124:1275–1281PubMedGoogle Scholar
  60. Meyerding HW, Black JR, Broders AC (1941) The etiology and pathology of Dupuytren’s contracture. Surg Gynecol Obstet 72(3):582–590Google Scholar
  61. Montesano R, Orci L (1988) Transforming growth factor beta stimulates collagen-matrix contraction by fibroblasts: implications for wound healing. Proc Natl Acad Sci U S A 85:4894–4897PubMedPubMedCentralCrossRefGoogle Scholar
  62. Mosakhani N, Guled M, Lahti L, Borze I, Forsman M, Pääkkönen V, Ryhänen J, Knuutila S (2010) Unique microRNA profile in Dupuytren’s contracture supports deregulation of β-catenin pathway. Mod Pathol 23:1544–1552PubMedCrossRefGoogle Scholar
  63. Moyer KE, Banducci DR, Graham WP 3rd, Ehrlich HP (2002) Dupuytren’s disease: physiologic changes in nodule and cord fibroblasts through aging in vitro. Plast Reconstr Surg 110:187–193PubMedCrossRefGoogle Scholar
  64. Murrel GAC, Hueston JT (1990) Aetiology f Dupuytren’s contracture. Aust N Z Surg 60:247–252CrossRefGoogle Scholar
  65. Mutsaers SE, Bishop JE, McGrouther G, Laurent GJ (1997) Mechanisms of tissue repair: from wound healing to fibrosis. Int J Biochem Cell Biol 29:5–17PubMedCrossRefGoogle Scholar
  66. Pagnotta A, Specchia N, Greco F (2002) Androgen receptors in Dupuytren’s contracture. J Orthop Res 20:163–168PubMedCrossRefGoogle Scholar
  67. Pagnotta A, Specchia N, Soccetti A, Manzotti S, Greco F (2003) Responsiveness of Dupuytren’s disease fibroblasts to 5 –alpha dihydrotestosterone. J Hand Surg [Am] 28(6):1029–1034CrossRefGoogle Scholar
  68. Pasquali Ronchetti I, Guerra D, Baccarani Contri M, Fornieri C, Mori G, Marcuzzi A, Zanasi S, Caroli A (1993) A clinical ultrastructural and immunohistochemical study of Dupuytren’s disease. J Hand Surg (Br) 18:262–269CrossRefGoogle Scholar
  69. Qian A, Meals A, Rajfer J, Gonzalez-Cadavid NF (2004) Comparison of gene expression profiles between Peyronie’s disease and Dupuytren’s contracture. Urology 64:399–404PubMedCrossRefGoogle Scholar
  70. Rocks N, Paulissen G, El Hour M, Quesada F, Crahay C, Gueders M, Foidart JM, Noel A, Cataldo D (2008) Emerging roles of ADAM and ADAMTS metalloproteinases in cancer. Biochimie 90:369–379PubMedCrossRefGoogle Scholar
  71. Ryan GB, Cliff WJ, Gabbiani G, Irlé C, Montandon D, Statkov PR, Majno G (1974) Myofibroblasts in human granulation tissue. Hum Pathol 5:55–67PubMedCrossRefGoogle Scholar
  72. Satish L, LaFramboise WA, O’Gorman DB, Johnson S, Janto B, Gan BS, Baratz ME, Hu FZ, Post JC, Ehrlich GD, Kathju S (2008) Identification of differentially expressed genes in fibroblasts derived from patients with Dupuytren’s Contracture. BMC Med Genom 23:10–15CrossRefGoogle Scholar
  73. Satish L, LaFramboise WA, Johnson S, Vi L, Njarlangattil A, Raykha C, Krill-Burger JM, Gallo PH, O’Gorman DB, Gan BS, Baratz ME, Ehrlich GD, Kathju S (2012) Fibroblasts from phenotypically normal palmar fascia exhibit molecular profiles highly similar to fibroblasts from active disease in Dupuytren’s Contracture. BMC Med Genom 5:15CrossRefGoogle Scholar
  74. Satish L, Palmer B, Liu F, Papatheodorou L, Rigatti L, Baratz ME, Kathju S (2015) Developing an animal model of Dupuytren’s disease by orthotopic transplantation of human fibroblasts into athymic rat. BMC Musculoskelet Disord 16:138–148PubMedPubMedCentralCrossRefGoogle Scholar
  75. Schmidtchen A, Fransson LA (1992) Analysis of glycosaminoglycan chains from different proteoglycan populations in human embryonic skin fibroblasts. Eur J Biochem 208:537–546PubMedCrossRefGoogle Scholar
  76. Schürch W, Skalli O, Gabbiani G (1990) Cellular biology. In: McFarlane RM, McGrouther DA, Flint MH (eds) Dupuytren’s disease: biology and treatment, vol 5, The hand and upper limb series. Churchill Livingstone, Edinburgh, pp 31–47Google Scholar
  77. Scott JE (1994) Proteoglycan-collagen interactions in connective tissues. In: Berger A, Delbrück A, Brenner P, Hinzmann R (eds) Dupuytren’s disease. Pathobiochemistry and clinical management. Springer, Berlin, pp 171–177CrossRefGoogle Scholar
  78. Shih B, Brown JJ, Armstrong DJ, Lindau T, Bayat A (2009) Differential gene expression analysis of subcutaneous fat, fascia, and skin overlying a Dupuytren’s disease nodule in comparison to control tissue. Hand (NY) 4:294–301CrossRefGoogle Scholar
  79. Shih B, Tassabehji M, Watson J, Bayat A (2012) DNA Copy number variations at chromosome 7p14.1 and chromosome 14q11.2 are associated with Dupuytren’s disease: potential role for MMP and Wnt signaling pathway. Plast Reconstr Surg 129:921–932PubMedCrossRefGoogle Scholar
  80. Silvestro L, Viano J, Naggi A, Torri G, Da Col R, Baiocchi C (1992) High-performance liquid chromatographic-mass spectrometric analysis of oligosaccharides from enzymatic digestion of glycosaminoglycans. J Chromatogr 591:225–232PubMedCrossRefGoogle Scholar
  81. Skalli O, Schürch D, Seemayer TA, Lagacé R, Montandon D, Pittet B, Gabbiani G (1989) Myofibroblasts from diverse pathologic settings are heterogeneous in their contento f actin isoforms intermediate filament proteins. Lab Investig 60:275–285PubMedGoogle Scholar
  82. Tomasek JJ, Haaskma CC (1991) Fibronectin filaments and actin microfilaments are organized into a fibroneous in Dupuytren’s disesed tissue. Anat Rec 230:175–182PubMedCrossRefGoogle Scholar
  83. Tomasek JJ, Rayan GM (1995) Correlation of alpha-smooth muscle actin expression and contraction in Dupuytren’s disease fibroblasts. J Hand Surg [Am] 20(3):450–455CrossRefGoogle Scholar
  84. Tomasek JJ, Schultz RI, Episalla CW, Newman SA (1986) The cytoskeleton and the extra-cellular matrix of the Dupuytren’s disease “myofibroblast”: an immune-fluorescence study of a non-muscle cell type. J Hand Surg [Am] 11(3):365–371CrossRefGoogle Scholar
  85. Tomasek JJ, Shultz RJ, Haaksma CJ (1987) Extracellular matrix-cytosckeletal connections at the surface of the specialized contractile fibroblast (myofibroblast) in Dupuytren’s disease. J Bone Joint 69:1400–1407CrossRefGoogle Scholar
  86. Tomasek JJ, Vaughan MB, Haaksma CJ (1999) Cellular Structure and biology of Dupuytren’s disease. Hand Clin 15:21–34PubMedGoogle Scholar
  87. Townley WA, Cambrey AD, Khaw PT, Grobbelaar AO (2008) Matrix metalloproteinase inhibition reduces contraction by dupuytren fibroblasts. J Hand Surg [Am] 33(9):1608–1616CrossRefGoogle Scholar
  88. Townley WA, Cambrey AD, Khaw PT, Grobbelaar AO (2009) The role of an MMP inhibitor in the regulation of mechanical tension by Dupuytren’s disease fibroblasts. J Hand Surg Eur Vol 34(6):783–787PubMedCrossRefGoogle Scholar
  89. Trelstad RL (1989) Matrix glycoproteins. In: Kelley WN, Harris ED, Ruddy S, Sledge CB (eds) Textbook of rheumatology. Saunders, Philadelphia, pp 42–53Google Scholar
  90. Tsang M, Leask A (2015) CCN2 is required for recruitment of Sox2-expressing cells during cutaneous tissue repair. J Cell Commun Signal 9(4):341–346PubMedCrossRefGoogle Scholar
  91. Tunn S, Gurr E, Delbruck A, Buhr T, Flory J (1988) The distribution of unsulphated and sulphated glycosaminoglycans in palmar fascia from patients with Dupuytren’s disease and healthy subjects. J Clin Chem Clin Biochem 26:7–14PubMedGoogle Scholar
  92. Ulrich D, Hrynyschyn K, Pallua N (2003) Matrix metalloproteinases and tissue inhibitors of metalloproteinases in sera and tissue of patients with Dupuytren’s disease. Plast Reconstr Surg 112:1279–1286PubMedCrossRefGoogle Scholar
  93. Ulrich D, Ulrich F, Piatkowski A, Pallua N (2009) Expression of matrix metalloproteinases and their inhibitors in cords and nodules of patients with Dupuytren’s disease. Arch Orthop Trauma Surg 129(11):1453–1459PubMedCrossRefGoogle Scholar
  94. Varma R, Varma RS (1983) In: Mucopolysaccharides, glycosaminoglicans of body fluids in health and disease. De Gruiter, BerlinGoogle Scholar
  95. Vaughan MB, Howard EW, Tomasek JJ (2000) Transforming growth factor beta-1 promotes the morphological and functional differentiation of the myofibroblast. Exp Cell Res 257:180–189PubMedCrossRefGoogle Scholar
  96. Verjee LS, Midwood K, Davidson D, Eastwood M, Nanchahal J (2010) Post-transcriptional regulation of alpha-smooth muscle actin determines the contractile phenotype of Dupuytren’s nodular cells. J Cell Physiol 224(3):681–690PubMedCrossRefGoogle Scholar
  97. Verjee LS, Verhoekx JS, Chan JK, Krausgruber T, Nicolaidou V, Izadi D, Davidson D, Feldmann M, Midwood KS, Nanchahal J (2013) Unraveling the signaling pathways promoting fibrosis in Dupuytren’s disease reveals TNF as a therapeutic target. Proc Natl Acad Sci U S A 110(10):E928–E937PubMedPubMedCentralCrossRefGoogle Scholar
  98. Vi L, Feng L, Zhu RD, Wu Y, Satish L, Gan BS, O’Gorman DB (2009a) Periostin differentially induces proliferation, contraction and apoptosis of primary Dupuytren’s disease and adjacent palmar fascia cells. Exp Cell Res 315(20):3574–3586PubMedPubMedCentralCrossRefGoogle Scholar
  99. Vi L, Njarlangattil A, Wu Y, Gan BS, O’Gorman DB (2009b) Type-1 Collagen differentially alters beta-catenin accumulation in primary Dupuytren’s Disease cord and adjacent palmar fascia cells. BMC Musculoskelet Disord 19(10):72–77CrossRefGoogle Scholar
  100. Vi L, Gan BS, O’Gorman DB (2010) The potential roles of cell migration and extra-cellular matrix interactions in Dupuytren’s disease progression and recurrence. Med Hypotheses 74:510–512PubMedCrossRefGoogle Scholar
  101. Viil J, Maasalu K, Mäemets-Allas K, Tamming L, Lõhmussaar K, Tooming M, Ingerpuu S, Märtson A, Jaks V (2015) Laminin-rich blood vessels display activated growth factor signaling and act as the proliferation centers in Dupuytren’s contracture. Arthritis Res Ther 17(1):144–153PubMedPubMedCentralCrossRefGoogle Scholar
  102. Wong M, Mudera V (2006) Feedback inhibition of high TGF-beta1 concentrations on myofibroblast induction and contraction by Dupuytren’s fibroblasts. J Hand Surg (Br) 31(5):473–483CrossRefGoogle Scholar
  103. Xing Z, Tremblay GM, Sime PJ et al (1997) Overexpression of granulocyte-macrophage colony-stimulating factor induces pulmonary granulation tissue formation and fibrosis by induction of transforming growth factor B1 and myofibroblast accumulation. Am J Pathol 150:59–66PubMedPubMedCentralGoogle Scholar
  104. Yenidunya MO, Yenidunya S, Seven E (2009) Pacinian hypertrophy in a type 2A hand burn contracture and Pacinian hypertrophy and hyperplasia in a Dupuytren’s contracture. Burns 35(3):446–450PubMedCrossRefGoogle Scholar
  105. Yildiz S, Karacaoğlu E, Pehlivan O (2004) Hyperbaric oxygen for the treatment of early-phase Dupuytren’s contracture. Microsurgery 24(1):26–29PubMedCrossRefGoogle Scholar
  106. Yurchenco PD (1989) Laminin polymerization and binding to glycosaminoglycans: a hypothesis for modulation of basement membrane structure. In: Aebi U, Engel J (eds) Cytoskeletal and extracellular proteins. Structure, interactions and assembly. Springer, Berlin, pp 357–366CrossRefGoogle Scholar
  107. Zhang AY, Fong KD, Pham H, Nacamuli RP, Longaker MT, Chang J (2008) Gene expression analysis of Dupuytren’s disease: the role of TGF-beta2. J Hand Surg Eur Vol 33(6):783–790PubMedCrossRefGoogle Scholar
  108. Zhou C, Hovius SE, Slijper HP, Feitz R, Van Nieuwenhoven CA, Pieters AJ, Selles RW (2015) Collagenase clostridium histolyticum versus limited fasciectomy for Dupuytren’s contracture: outcomes from a multicenter propensity score matched study. Plast Reconstr Surg 136(1):87–97PubMedCrossRefGoogle Scholar

Copyright information

© The International CCN Society 2016

Authors and Affiliations

  • Massimiliano Tripoli
    • 1
  • Adriana Cordova
    • 1
  • Francesco Moschella
    • 1
  1. 1.Plastic and Reconstructive SurgeryPalermoItaly

Personalised recommendations