Advertisement

Journal of Cell Communication and Signaling

, Volume 7, Issue 4, pp 265–278 | Cite as

Inhibition of CK2 binding to BMPRIa induces C2C12 differentiation into osteoblasts and adipocytes

  • Oleksandra Moseychuk
  • Hemanth Akkiraju
  • Joyita Dutta
  • Alex D’Angelo
  • Beth Bragdon
  • Randall L. Duncan
  • Anja NoheEmail author
Research Article

Abstract

BMP2 is a growth factor that regulates the cell fate of mesenchymal stem cells into osteoblast and adipocytes. However, the detailed signaling pathways and mechanism are unknown. We previously reported a new interaction of Casein kinase II (CK2) with the BMP receptor type-Ia (BMPRIa) and demonstrated using mimetic peptides CK2.1, CK2.2 and CK2.3 that the release of CK2 from BMPRIa activates Smad signaling and osteogenesis. Previously, we showed that mutation of these CK2 sites on BMPRIa (MCK2.1 (476S-A), MCK2.2 (324S-A) and MCK2.3 (214S-A)) induced osteogenesis. However, one mutant MCK2.1 induced osteogenesis similar to overexpression of wild type BMPRIa, suggesting that the effect of this mutant on mineralization was due to overexpression. In this paper we investigated the signaling pathways involved in the CK2-BMPRIa mediated osteogenesis and identified a new signaling pathway activating adipogenesis dependent on the BMPRIa and CK2 association. Further the mechanism for adipogenesis and osteogenesis is specific to the CK2 interaction site on BMPRIa. In detail our data show that overexpression of MCK2.2 induced osteogenesis was dependent on Caveolin-1 (Cav1) and the activation of the Smad and mTor pathways, while overexpression of MCK2.3 induced osteogenesis was independent of Caveolin-1 without activation of Smad pathway. However, MCK2.3 induced osteogenesis via the MEK pathway. The adipogenesis induced by the overexpression of MCK2.2 in C2C12 cells was dependent on the p38 and ERK pathways as well as Caveolin-1. These data suggest that signaling through BMPRIa used two different signaling pathways to induce osteogenesis dependent on CK2. Additionally the data supports a signaling pathway initiated in caveolae and one outside of caveolae to induce mineralization. Moreover, they reveal the signaling pathway of BMPRIa mediated adipogenesis.

Keywords

BMP2 Adipogenesis Osteogenesis Casein Kinase II 

References

  1. Bragdon B, Thinakaran S, Bonor J, Underhill TM, Petersen NO, Nohe A (2009) FRET reveals novel protein-receptor interaction of bone morphogenetic proteins receptors and adaptor protein 2 at the cell surface. Biophys J 97:1428–1435PubMedCentralPubMedCrossRefGoogle Scholar
  2. Bragdon B, Thinakaran S, Moseychuk O, King D, Young K, Litchfield DW, Petersen NO, Nohe A (2010) Casein kinase 2 beta-subunit is a regulator of bone morphogenetic protein 2 signaling. Biophys J 99:897–904PubMedCentralPubMedCrossRefGoogle Scholar
  3. Bragdon B, Thinakaran S, Moseychuk O, Gurski L, Bonor J, Price C, Wang L, Beamer WG, Nohe A (2011) Casein kinase 2 regulates in vivo bone formation through its interaction with bone morphogenetic protein receptor type Ia. Bone 49(5):944–954Google Scholar
  4. Bragdon B, Moseychuk O, Saldanha S, King D, Julian J, Nohe A (2012) Bone morphogenetic proteins: a critical review. Cell Signal 23:609–620CrossRefGoogle Scholar
  5. Cencetti F, Bernacchioni C, Nincheri P, Donati C, Bruni P (2010) Transforming growth factor-Î21 induces transdifferentiation of myoblasts into myofibroblasts via up-regulation of sphingosine kinase-1/S1P3 axis. Mol Biol Cell 21:1111–1124PubMedCentralPubMedCrossRefGoogle Scholar
  6. Chaverneff F, Barrett J (2009) Casein kinase II contributes to the synergistic effects of BMP7 and BDNF on Smad 1/5/8 phosphorylation in septal neurons under hypoglycemic stress. J Neurochem 109:733–743PubMedCentralPubMedCrossRefGoogle Scholar
  7. Chen D, Zhao M, Mundy GR (2004) Bone morphogenetic proteins. Growth Factors 22:233–241PubMedCrossRefGoogle Scholar
  8. Derynck R, Feng XH (1997) TGF-beta receptor signaling. Biochim Biophys Acta 1333:F105–F150PubMedGoogle Scholar
  9. Duncan JS, Litchfield DW (2008) Too much of a good thing: the role of protein kinase CK2 in tumorigenesis and prospects for therapeutic inhibition of CK2. Biochim Biophys Acta 1784:33–47PubMedCrossRefGoogle Scholar
  10. Gallea S, Lallemand F, Atfi A, Rawadi G, Ramez V, Spinella-Jaegle S, Kawai S, Faucheu C, Huet L, Baron R, Roman-Roman S (2001) Activation of mitogen-activated protein kinase cascades is involved in regulation of bone morphogenetic protein-2-induced osteoblast differentiation in pluripotent C2C12 cells. Bone 28:491–498PubMedCrossRefGoogle Scholar
  11. Gilboa L, Nohe A, Geissendorfer T, Sebald W, Henis YI, Knaus P (2000) Bone morphogenetic protein receptor complexes on the surface of live cells: a new oligomerization mode for serine/threonine kinase receptors. Mol Biol Cell 11:1023–1035PubMedCentralPubMedCrossRefGoogle Scholar
  12. Griffin MA, Sen S, Sweeney HL, Discher DE (2004) Adhesion-contractile balance in myocyte differentiation. J Cell Sci 117:5855–5863PubMedCrossRefGoogle Scholar
  13. Guicheux J, Lemonnier J, Ghayor C, Suzuki A, Palmer G, Caverzasio J (2003) Activation of p38 mitogen-activated protein kinase and c-Jun-NH2-terminal kinase by BMP-2 and their implication in the stimulation of osteoblastic cell differentiation. J Bone Miner Res 18:2060–2068PubMedCrossRefGoogle Scholar
  14. Hartung A, Bitton-Worms K, Rechtman MM, Wenzel V, Boergermann JH, Hassel S, Henis YI, Knaus P (2006) Different routes of bone morphogenic protein (BMP) receptor endocytosis influence BMP signaling. Mol Cell Biol 26:7791–7805PubMedCentralPubMedCrossRefGoogle Scholar
  15. Hassel S, Schmitt S, Hartung A, Roth M, Nohe A, Petersen N, Ehrlich M, Henis YI, Sebald W, Knaus P (2003) Initiation of Smad-dependent and Smad-independent signaling via distinct BMP-receptor complexes. J Bone Joint Surg Am 85-A(Suppl 3):44–51PubMedGoogle Scholar
  16. Hata K, Nishimura R, Ikeda F, Yamashita K, Matsubara T, Nokubi T, Yoneda T (2003) Differential roles of Smad1 and p38 kinase in regulation of peroxisome proliferator-activating receptor gamma during bone morphogenetic protein 2-induced adipogenesis. Mol Biol Cell 14:545–555PubMedCentralPubMedCrossRefGoogle Scholar
  17. Higuchi C, Myoui A, Hashimoto N, Kuriyama K, Yoshioka K, Yoshikawa H, Itoh K (2002) Continuous inhibition of MAPK signaling promotes the early osteoblastic differentiation and mineralization of the extracellular matrix. J Bone Miner Res 17:1785–1794PubMedCrossRefGoogle Scholar
  18. Itoh S, Itoh F, Goumans MJ, Ten Dijke P (2000) Signaling of transforming growth factor-beta family members through Smad proteins. Eur J Biochem 267:6954–6967PubMedCrossRefGoogle Scholar
  19. Jun JH, Yoon W-J, Seo S-B, Woo K-M, Kim G-S, Ryoo H-M, Baek J-H (2010) BMP2-activated Erk/MAP kinase stabilizes Runx2 by increasing p300 levels and histone acetyltransferase activity. J Biol Chem 285:36410–36419PubMedCentralPubMedCrossRefGoogle Scholar
  20. Kawai M, Hattori H, Yasue K, Mizutani H, Ueda M, Kaneda T, Hoshino T (1994) Development of hemopoietic bone marrow within the ectopic bone induced by bone morphogenetic protein. Blood Cells 20:191–199, discussion 200-1PubMedGoogle Scholar
  21. Kimura N, Matsuo R, Shibuya H, Nakashima K, Taga T (2000) BMP2-induced apoptosis is mediated by activation of the TAK1-p38 kinase pathway that is negatively regulated by Smad6. J Biol Chem 275:17647–17652PubMedCrossRefGoogle Scholar
  22. Kubota N, Terauchi Y, Miki H, Tamemoto H, Yamauchi T, Komeda K, Satoh S, Nakano R, Ishii C, Sugiyama T, Eto K, Tsubamoto Y, Okuno A, Murakami K, Sekihara H, Hasegawa G, Naito M, Toyoshima Y, Tanaka S, Shiota K, Kitamura T, Fujita T, Ezaki O, Aizawa S, Kadowaki T et al (1999) PPAR gamma mediates high-fat diet-induced adipocyte hypertrophy and insulin resistance. Mol Cell 4:597–609PubMedCrossRefGoogle Scholar
  23. Lai CF, Cheng SL (2002) Signal transductions induced by bone morphogenetic protein-2 and transforming growth factor-beta in normal human osteoblastic cells. J Biol Chem 277:15514–15522PubMedCrossRefGoogle Scholar
  24. Langenfeld EM, Kong Y, Langenfeld J (2005) Bone morphogenetic protein-2-induced transformation involves the activation of mammalian target of rapamycin. Mol Cancer Res 3:679–684PubMedCrossRefGoogle Scholar
  25. Liao QC, Li YL, Qin YF, Quarles LD, Xu KK, Li R, Zhou HH, Xiao ZS (2008) Inhibition of adipocyte differentiation by phytoestrogen genistein through a potential downregulation of extracellular signal-regulated kinases 1/2 activity. J Cell Biochem 104:1853–1864PubMedCrossRefGoogle Scholar
  26. Lou J, Tu Y, Li S, Manske PR (2000) Involvement of ERK in BMP-2 induced osteoblastic differentiation of mesenchymal progenitor cell line C3H10T1/2. Biochem Biophys Res Commun 268:757–762PubMedCrossRefGoogle Scholar
  27. Marcus R, Feldman D, Nelson DA, Rosen CJ (2008) Osteoporosis. Elsevier Academic Press, San Diego, CAGoogle Scholar
  28. Massague J (1998) TGF-beta signal transduction. Annu Rev Biochem 67:753–791PubMedCrossRefGoogle Scholar
  29. Matsubara T, Kida K, Yamaguchi A, Hata K, Ichida F, Meguro H, Aburatani H, Nishimura R, Yoneda T (2008) BMP2 regulates Osterix through Msx2 and Runx2 during osteoblast differentiation. J Biol Chem 283:29119–29125PubMedCentralPubMedCrossRefGoogle Scholar
  30. Nohe A, Petersen NO (2007) Image correlation spectroscopy. Sci STKE 2007:pl7PubMedGoogle Scholar
  31. Nohe A, Keating E, Loh C, Underhill MT, Petersen NO (2004) Caveolin-1 isoform reorganization studied by image correlation spectroscopy. Faraday Discuss 126:185–195, discussion 245-54PubMedCrossRefGoogle Scholar
  32. Noth U, Tuli R, Seghatoleslami R, Howard M, Shah A, Hall DJ, Hickok NJ, Tuan RS (2003) Activation of p38 and Smads mediates BMP-2 effects on human trabecular bone-derived osteoblasts. Exp Cell Res 291:201–211PubMedCrossRefGoogle Scholar
  33. Saldanha S, Bragdon B, Moseychuk O, Bonor J, Dhurjati P, Nohe A (2013) Caveolae regulate smad signaling as verified by novel imaging and system biology approaches. J Cell Physiol 228(5):1060–1069Google Scholar
  34. Schulz TJ, Tseng YH (2009) Emerging role of bone morphogenetic proteins in adipogenesis and energy metabolism. Cytokine Growth Factor Rev 20:523–531PubMedCentralPubMedCrossRefGoogle Scholar
  35. Seale P, Kajimura S, Yang W, Chin S, Rohas LM, Uldry M, Tavernier G, Langin D, Spiegelman BM (2007) Transcriptional control of brown fat determination by PRDM16. Cell Metab 6:38–54PubMedCentralPubMedCrossRefGoogle Scholar
  36. Seale P, Bjork B, Yang W, Kajimura S, Chin S, Kuang S, Scime A, Devarakonda S, Conroe HM, Erdjument-Bromage H, Tempst P, Rudnicki MA, Beier DR, Spiegelman BM (2008) PRDM16 controls a brown fat/skeletal muscle switch. Nature 454:961–967PubMedCentralPubMedCrossRefGoogle Scholar
  37. Senta H, Park H, Bergeron E, Drevelle O, Fong D, Leblanc E, Cabana F, Roux S, Grenier G, Faucheux N (2009) Cell responses to bone morphogenetic proteins and peptides derived from them: biomedical applications and limitations. Cytokine Growth Factor Rev 20:213–222PubMedCrossRefGoogle Scholar
  38. Sieber C, Kopf J, Hiepen C, Knaus P (2009) Recent advances in BMP receptor signaling. Cytokine Growth Factor Rev 20:343–355PubMedCrossRefGoogle Scholar
  39. Siersbaek R, Nielsen R, Mandrup S (2010) PPARgamma in adipocyte differentiation and metabolism–novel insights from genome-wide studies. FEBS Lett 584:3242–3249PubMedCrossRefGoogle Scholar
  40. Sugimori K, Matsui K, Motomura H, Tokoro T, Wang J, Higa S, Kimura T, Kitajima I (2005) BMP-2 prevents apoptosis of the N1511 chondrocytic cell line through PI3K/Akt-mediated NF-kappaB activation. J Bone Miner Metab 23:411–419PubMedCrossRefGoogle Scholar
  41. ten Dijke P, Ichijo H, Franzén P, Schulz P, Saras J, Toyoshima H, Heldin CH, Miyazono K (1993) Activin receptor-like kinases: a novel subclass of cell-surface receptors with predicted serine/threonine kinase activity. Oncogene 8:2879–2887PubMedGoogle Scholar
  42. Tseng Y-H, He T-C (2007) Bone morphogenetic proteins and adipocyte differentiation. Cellscience Rev 3(3):342–360Google Scholar
  43. Viñals F, López-Rovira T, Rosa JL, Ventura F (2002) Inhibition of PI3K/p70 S6K and p38 MAPK cascades increases osteoblastic differentiation induced by BMP-2. FEBS Lett 510:99–104PubMedCrossRefGoogle Scholar

Copyright information

© The International CCN Society 2013

Authors and Affiliations

  • Oleksandra Moseychuk
    • 1
  • Hemanth Akkiraju
    • 1
  • Joyita Dutta
    • 1
  • Alex D’Angelo
    • 1
  • Beth Bragdon
    • 1
  • Randall L. Duncan
    • 1
  • Anja Nohe
    • 1
    • 2
    Email author
  1. 1.Department of Biological SciencesUniversity of DelawareNewarkUSA
  2. 2.Department of BiologyUniversity of DelawareNewarkUSA

Personalised recommendations