Advertisement

Chemosensory Perception

, Volume 9, Issue 4, pp 174–181 | Cite as

Micturition Drive is Associated with Decreased Brain Response to Palatable Milkshake in the Human Anterior Insular Cortex

  • Xiao Gao
  • Xue Sun
  • Maria G. Veldhuizen
  • Yuko Nakamura
  • Nils B. Kroemer
  • Dana Small
Article

Abstract

Introduction

Most functional magnetic resonance imaging (fMRI) studies of taste deliver small quantities of liquids over roughly 45 min to repeatedly sample brain response to tastants. Within this time participants frequently report that their need to urinate increases.

Methods

Since both gustatory and interoceptive information are represented in the anterior insular cortex, we evaluated whether perceived need to urinate influenced insular responses to the receipt of a small bolus of milkshake in two datasets (n = 45).

Results

Change in pre- to post-scan ratings of desire to urinate was inversely related to anterior insular response to milkshake.

Conclusion

This finding demonstrates that micturition drive influences insular response to milkshake and supports previous reports of overlapping gustatory and visceral representation within human anterior insular cortex.

Keywords

Interoception Taste Multisensory fMRI 

Notes

Acknowledgments

This work was funded by funding from the National Institutes of Health grant R01 DK085579.

Compliance with Ethical Standards

Funding

This study was funded by the National Institutes of Health grant to Dana Small (#R01 DK085579).

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed Consent

Informed consent was obtained from all individual participants included in the study. Informed consent to participate in our study was approved by Yale University School of Medicine Human Investigation Committee.

References

  1. Avery JA, Kerr KL, Ingeholm JE, Burrows K, Bodurka J, Simmons WK (2015) A common gustatory and interoceptive representation in the human mid-insula. Hum Brain Mapp 36:2996–3006. doi: 10.1002/hbm.22823 CrossRefGoogle Scholar
  2. Babbs RK, Sun X, Felsted J, Chouinard-Decorte F, Veldhuizen MG, Small DM (2013) Decreased caudate response to milkshake is associated with higher body mass index and greater impulsivity. Physiol Behav 121:103–111. doi: 10.1016/j.physbeh.2013.03.025 CrossRefGoogle Scholar
  3. Bartoshuk LM, Duffy VB, Green BG, Hoffman HJ, Ko CW, Lucchina LA, Marks LE, Snyder DJ, Weiffenbach JM (2004) Valid across-group comparisons with labeled scales: the gLMS versus magnitude matching. Physiol Behav 82:109–114. doi: 10.1016/j.physbeh.2004.02.033 CrossRefGoogle Scholar
  4. Craig AD (2002) How do you feel? Interoception: the sense of the physiological condition of the body. Nat Rev Neurosci 3:655–666. doi: 10.1038/nrn894 CrossRefGoogle Scholar
  5. Craig AD (2009) How do you feel—now? The anterior insula and human awareness. Nat Rev Neurosci 10:59–70. doi: 10.1038/nrn2555 CrossRefGoogle Scholar
  6. Craig AD, Chen K, Bandy D, Reiman EM (2000) Thermosensory activation of insular cortex. Nat Neurosci 3:184–190. doi: 10.1038/nrn2555 CrossRefGoogle Scholar
  7. Critchley HD, Wiens S, Rotshtein P, Öhman A, Dolan RJ (2004) Neural systems supporting interoceptive awareness. Nat Neurosci 7:189–195. doi: 10.1038/nn1176 CrossRefGoogle Scholar
  8. de Araujo IE, Simon SA (2009) The gustatory cortex and multisensory integration. Int J Obes 33:S34–S43. doi: 10.1038/ijo.2009.70 CrossRefGoogle Scholar
  9. de Araujo IE, Geha P, Small DM (2012) Orosensory and homeostatic functions of the insular taste cortex. Chemosens Percept 5:64–79. doi: 10.1007/s12078-012-9117-9 CrossRefGoogle Scholar
  10. Drake M, Fowler C, Griffiths D, Mayer E, Paton J, Birder L (2010) Neural control of the lower urinary and gastrointestinal tracts: supraspinal CNS mechanisms. Neurourol Urodyn 29:119–127. doi: 10.1002/nau.20841 CrossRefGoogle Scholar
  11. Green BG, Shaffer GS, Gilmore MM (1993) Derivation and evaluation of a semantic scale of oral sensation magnitude with apparent ratio properties. Chem Senses 18:683–702. doi: 10.1093/chemse/21.3.323 CrossRefGoogle Scholar
  12. Green BG, Dalton P, Cowart B, Shaffer G, Rankin K, Higgins J (1996) Evaluating the ‘labeled magnitude scale’ for measuring sensations of taste and smell. Chem Senses 21:323–334CrossRefGoogle Scholar
  13. Griffiths D, Tadic SD (2008) Bladder control, urgency, and urge incontinence: evidence from functional brain imaging. Neurourol Urodyn 27:466–474. doi: 10.1002/nau.20549 CrossRefGoogle Scholar
  14. Griffiths D, Tadic SD, Schaefer W, Resnick NM (2007) Cerebral control of the bladder in normal and urge-incontinent women. NeuroImage 37:1–7. doi: 10.1016/j.neuroimage.2007.04.061 CrossRefGoogle Scholar
  15. Haase L, Green E, Murphy C (2011) Males and females show differential brain activation to taste when hungry and sated in gustatory and reward areas. Appetite 57:421–434. doi: 10.1016/j.appet.2011.06.009 CrossRefGoogle Scholar
  16. Hanamori T, Kunitake T, Kato K, Kannan H (1998) Responses of neurons in the insular cortex to gustatory, visceral, and nociceptive stimuli in rats. J Neurophysiol 79:2535–2545Google Scholar
  17. Hare TA, Camerer CF, Rangel A (2009) Self-control in decision-making involves modulation of the vmPFC valuation system. Science 324:646–648. doi: 10.1126/science.1168450 CrossRefGoogle Scholar
  18. Kong J, White NS, Kwong KK, Vangel MG, Rosman IS, Gracely RH, Gollub RL (2006) Using fMRI to dissociate sensory encoding from cognitive evaluation of heat pain intensity. Hum Brain Mapp 27:715–721. doi: 10.1002/hbm.20213 CrossRefGoogle Scholar
  19. Kuhtz-Buschbeck J, Gilster R, Van der Horst C, Hamann M, Wolff S, Jansen O (2009) Control of bladder sensations: an fMRI study of brain activity and effective connectivity. NeuroImage 47:18–27. doi: 10.1016/j.neuroimage.2009.04.020 CrossRefGoogle Scholar
  20. Kurth F, Zilles K, Fox PT, Laird AR, Eickhoff SB (2010) A link between the systems: functional differentiation and integration within the human insula revealed by meta-analysis. Brain Struct Funct 214:519–534. doi: 10.1007/s00429-010-0255-z CrossRefGoogle Scholar
  21. Lim J, Wood A, Green BG (2009) Derivation and evaluation of a labeled hedonic scale. Chem Senses 34:739–751. doi: 10.1093/chemse/bjp054 CrossRefGoogle Scholar
  22. Macey PM, Macey KE, Kumar R, Harper RM (2004) A method for removal of global effects from fMRI time series. NeuroImage 22:360–366. doi: 10.1016/j.neuroimage.2003.12.042 CrossRefGoogle Scholar
  23. Nolan-Poupart S, Veldhuizen MG, Geha P, Small DM (2013) Midbrain response to milkshake correlates with ad libitum milkshake intake in the absence of hunger. Appetite 60:168–174. doi: 10.1016/j.appet.2012.09.032 CrossRefGoogle Scholar
  24. O’Doherty J, Rolls ET, Francis S, Bowtell R, McGlone F (2001) Representation of pleasant and aversive taste in the human brain. J Neurophysiol 85:1315–1321Google Scholar
  25. Olausson H, Lamarre Y, Backlund H, Morin C, Wallin B, Starck G, Ekholm S, Strigo I, Worsley K, Vallbo Å (2002) Unmyelinated tactile afferents signal touch and project to insular cortex. Nat Neurosci 5:900–904. doi: 10.1038/nn896 CrossRefGoogle Scholar
  26. Olausson H, Charron J, Marchand S, Villemure C, Strigo I, Bushnell M (2005) Feelings of warmth correlate with neural activity in right anterior insular cortex. Neurosci Lett 389:1–5. doi: 10.1016/j.neulet.2005.06.065 CrossRefGoogle Scholar
  27. Small DM (2010) Taste representation in the human insula. Brain Struct Funct 214:551–561. doi: 10.1007/s00429-010-0266-9 CrossRefGoogle Scholar
  28. Small DM, Zatorre RJ, Dagher A, Evans AC, Jones-Gotman M (2001) Changes in brain activity related to eating chocolate. Brain 124:1720–1733. doi: 10.1093/brain/124.9.1720 CrossRefGoogle Scholar
  29. Small DM, Gregory MD, Mak YE, Gitelman D, Mesulam MM, Parrish T (2003) Dissociation of neural representation of intensity and affective valuation in human gustation. Neuron 39:701–711. doi: 10.1016/S0896-6273(03)00467-7
  30. Smeets PA, de Graaf C, Stafleu A, van Osch MJ, Nievelstein RA, van der Grond J (2006) Effect of satiety on brain activation during chocolate tasting in men and women. Am J Clin Nutr 83:1297–1305Google Scholar
  31. Stice E, Spoor S, Bohon C, Small D (2008) Relation between obesity and blunted striatal response to food is moderated by TaqIA A1 allele. Science 322:449–452. doi: 10.1126/science.1161550 CrossRefGoogle Scholar
  32. Sun X, Veldhuizen MG, Wray AE, de Araujo IE, Sherwin RS, Sinha R, Small DM (2014) The neural signature of satiation is associated with ghrelin response and triglyceride metabolism. Physiol Behav 136:63–73. doi: 10.1016/j.physbeh.2014.04.017 CrossRefGoogle Scholar
  33. Terasawa Y, Shibata M, Moriguchi Y, Umeda S (2012) Anterior insular cortex mediates bodily sensibility and social anxiety. Soc Cogn Affect Neurosci 8:259–266. doi: 10.1093/scan/nss108 CrossRefGoogle Scholar
  34. Veldhuizen MG, Bender G, Constable RT, Small DM (2007) Trying to detect taste in a tasteless solution: modulation of early gustatory cortex by attention to taste. Chem Senses 32:569–581. doi: 10.1093/chemse/bjm025 CrossRefGoogle Scholar
  35. Veldhuizen MG, Albrecht J, Zelano C, Boesveldt S, Breslin P, Lundström JN (2011) Identification of human gustatory cortex by activation likelihood estimation. Hum Brain Mapp 32:2256–2266. doi: 10.1002/hbm.21188 CrossRefGoogle Scholar
  36. Zaki J, Davis JI, Ochsner KN (2012) Overlapping activity in anterior insula during interoception and emotional experience. NeuroImage 62:493–499. doi: 10.1016/j.neuroimage.2012.05.012 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Faculty of PsychologySouthwest UniversityChongqingChina
  2. 2.The John B. Pierce LaboratoryNew HavenUSA
  3. 3.Department of PsychiatryYale School of MedicineNew HavenUSA
  4. 4.Yale Interdepartmental Neuroscience ProgramYale UniversityNew HavenUSA
  5. 5.Department of Psychiatry and Neuroimaging CenterTechnische Universität DresdenDresdenGermany
  6. 6.Department of PsychologyYale UniversityNew HavenUSA

Personalised recommendations