Skip to main content
Log in

Ethylmaltol Odor Enhances Salivary Hemodynamic Responses to Sucrose Taste as Detected by Near-Infrared Spectroscopy

Chemosensory Perception

Abstract

The perceived intensity of the taste of a food is enhanced only if the odor of the food is perceptually similar to the taste. For example, a caramel-like odor enhances the perceived intensity of sweetness. The way gustatory and olfactory signals are integrated in the brain depends largely on one’s previous experiences with taste and odor pairings. To elucidate the effects of a sweet, sugary odor, ethylmaltol, on sucrose taste, as perceived by the central integration of flavor, we recorded salivary hemodynamic responses to the odor and taste pairings using near-infrared spectroscopy (NIRS) of seven panelists. First, we observed concentration-dependent increases in the amplitude of the responses to 0 to 6 % sucrose solutions. Second, when ethylmaltol odor was added to a 4 % sucrose solution, we observed a significant increase in the amplitude of the responses from all panelists. The addition of ethylmaltol to a tasteless solution caused no significant change in the amplitude of the salivary hemodynamic response. These results indicate that the sweet odor of ethylmaltol enhances the salivary hemodynamic response when combined with a sweet taste. Therefore, a congruent combination of sweet odor and taste greatly enhances salivary responses, which are dependent on the central integration of odor and taste.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

NIRS:

Near-infrared spectroscopy

EEG:

Electroencephalography

[oxyHb]:

Oxygenated hemoglobin concentration

[deoxyHb]:

Deoxygenated hemoglobin concentration

ANOVA:

Analysis of variance

MRI:

Magnetic resonance imaging

SEM:

Standard error of the mean

References

  • Bembich S, Lanzara C, Clarici A, Demarini S, Tepper BJ, Gasparini P, Grasso DL. Individual differences in prefrontal cortex activity during perception of bitter taste using fNIRS methodology. Chem Senses. 2010;35:801–812.

    Article  CAS  Google Scholar 

  • Bender G, Hummel T, Negoias S, Small DM. Separate signals for orthonasal vs. retronasal perception of food but not nonfood odors. Behav Neurosci. 2009;123:481–489.

    Article  Google Scholar 

  • Bonnans SR, Noble AC. Interaction of salivary flow with temporal perception of sweetness, sourness, and fruitiness. Physiol Behav. 1995;57:569–574.

    Article  CAS  Google Scholar 

  • Chance B, Zhuang Z, UnAh C, Alter C, Lipton L. Cognition-activated low-frequency modulation of light absorption in human brain. Proc Natl Acad Sci USA. 1993;90:3770–3774.

    Article  CAS  Google Scholar 

  • Christensen CM, Brand JG, Malamud D. Salivary changes in solution pH: a source of individual differences in sour taste perception. Physiol Behav. 1987;40:221–227.

    Article  CAS  Google Scholar 

  • Dalton P, Doolittle N, Nagata H, Breslin PA. The merging of the senses: integration of subthreshold taste and smell. Nat Neurosci. 2000;3:431–432.

    Article  CAS  Google Scholar 

  • Davies GA, Wantling E, Stokes JR. The influence of beverages on the stimulation and viscoelasticity of saliva: relationship to mouthfeel? Food Hydrocoll. 2009;23:2261–2269.

    Article  CAS  Google Scholar 

  • Delwiche J, O’Mahony M. Changes in secreted salivary sodium are sufficient to alter salt taste sensitivity: use of signal detection measures with continuous monitoring of the oral environment. Physiol Behav. 1996;59:605–611.

    Article  CAS  Google Scholar 

  • Djordjevic J, Zatorre RJ, Jones-Gotman M. Effects of perceived and imagined odors on taste detection. Chem Senses. 2004;29:199–208.

    Google Scholar 

  • Eldeghaidy S, Marciani L, Pfeiffer JC, Hort J, Head K, Taylor AJ, Spiller RC, Gowland PA, Engelen L, de Wijk RA, Prinz JF, Janssen AM, van der Bilt A, Weenen H, Bosman F. A comparison of the effects of added saliva, alpha-amylase and water on texture perception in semisolids. Physiol Behav. 2003;78:805–811.

    Article  Google Scholar 

  • Ferrari M, Quaresima V. A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application. NeuroImage. 2012;63:921–935.

    Article  Google Scholar 

  • Frank RA, Byram J. Taste–smell interactions are tastant and odorant dependent. Chem Senses. 1988;13:445–455.

    Article  CAS  Google Scholar 

  • Frank RA, Ducheny K, Mize SS. Strawberry odor, but not red color, enhances the sweetness of sucrose solutions. Chem Senses. 1989;14:371–377.

    Article  CAS  Google Scholar 

  • Froehlich DA, Pangborn RM, Whitaker JR. The effect of oral stimulation on human-parotid salivary flow rate and alpha-amylase secretion. Physiol Behav. 1987;41:209–217.

    Article  CAS  Google Scholar 

  • Garrett JR. The proper role of nerves in salivary secretion: a review. J Dent Res. 1987;66:387–397.

    Article  CAS  Google Scholar 

  • Heinzerling CI, Smit G, Dransfield E. Modelling oral conditions and thickness perception of a starch product. Int Dairy J. 2008;18:867–873.

    Article  CAS  Google Scholar 

  • Hodson NA, Linden RW. The effect of monosodium glutamate on parotid salivary flow in comparison to the response to representatives of the other four basic tastes. Physiol Behav. 2006;89:711–717.

    Article  CAS  Google Scholar 

  • Hornung DE, Enns MP. The synergistic action of the taste and smell components of flavour. In: Birch G, Cambell-Platt G, editors. Synergy. Andover: Intercept; 1994. p. 145–154.

    Google Scholar 

  • Hort J, Hollowood TA. Controlled continuous flow delivery system for investigating taste–aroma interactions. J Agric Food Chem. 2004;52:4834–4843.

    Article  CAS  Google Scholar 

  • Jobsis FF. Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters. Science. 1977;198:1264–1267.

    Article  CAS  Google Scholar 

  • Lagerlöf F, Dawes C. Effect of sucrose as a gustatory stimulus on the flow rates of parotid and whole saliva. Caries Res. 1985;19:206–211.

    Article  Google Scholar 

  • Lashley KS. Reflex secretion of the human parotid gland. J Exp Psych. 1916;1:461–493.

    Article  Google Scholar 

  • Lugaz O, Pillias AM, Boireau-Ducept N, Faurion A. Time–intensity evaluation of acid taste in subjects with saliva high flow and low flow rates for acids of various chemical properties. Chem Senses. 2005;30:89–103.

    Article  CAS  Google Scholar 

  • Matsumoto T, Saito K, Nakamura A, Saito T, Nammoku T, Ishikawa M, Mori K. Dried-bonito aroma components enhance salivary hemodynamic responses to broth tastes detected by near-infrared spectroscopy. J Agric Food Chem. 2012;60:805–811.

    Article  CAS  Google Scholar 

  • Matsuo R. Role of saliva in the maintenance of taste sensitivity. Crit Rev Oral Biol Med. 2000;11:216–229.

    Article  CAS  Google Scholar 

  • Mese H, Matsuo R. Salivary secretion, taste and hyposalivation. J Oral Rehabil. 2007;34:711–723.

    Article  CAS  Google Scholar 

  • Mosciano G, Fasano M, Michalski J, Sadural S. Organoleptic characteristics of flavor materials. Perfum Flav. 1991;16:31–33.

    Google Scholar 

  • Neyraud E, Heinzerling CI, Bult JHF, Mesmin C, Dransfield E. Effects of different tastants of parotid saliva flow and composition. Chemosens Percept. 2009;2:108–116.

    Article  Google Scholar 

  • Norris MB, Noble AC, Pangborn RM. Human saliva and taste responses to acids varying in anions, titratable acidity, and pH. Physiol Behav. 1984;32:237–244.

    Article  CAS  Google Scholar 

  • Okamoto M, Matsunami M, Dan H, Kohata T, Kohyama K, Dan I. Prefrontal activity during taste encoding: an fNIRS study. NeuroImage. 2006;31:796–806.

    Article  Google Scholar 

  • Pedersen AM, Bardow A, Jensen SB, Nauntofte B. Saliva and gastrointestinal functions of taste, mastication, swallowing and digestion. Oral Dis. 2002;8:117–129.

    Article  CAS  Google Scholar 

  • Plichta MM, Herrmann MJ, Baehne CG, Ehlis AC, Richter MM, Pauli P, Fallgatter A. Event-related functional near-infrared spectroscopy (fNIRS): are the measurements reliable? NeuroImage. 2006;31:116–124.

    Article  CAS  Google Scholar 

  • Prescott J. Flavour as a psychological construct: implications for perceiving and measuring the sensory qualities of foods. Food Qual Prefer. 1999;10:349–356.

    Article  Google Scholar 

  • Sato H, Obata AN, Moda I, Ozaki K, Yasuhara T, Yamamoto Y, Kiguchi M, Maki A, Kubota K, Koizumi H. Application of near-infrared spectroscopy to measurement of hemodynamic signals accompanying stimulated saliva secretion. J Biomed Opt. 2011;16:047002.

    Article  Google Scholar 

  • Schifferstein HN, Verlegh PW. The role of congruency and pleasantness in odor-induced taste enhancement. Acta Psychologica. 1996;94:87–105.

    Article  CAS  Google Scholar 

  • Shannon IL. Parotid fluid flow rate as related to whole saliva volume. Arch Oral Biol. 1962;7:391–394.

    Article  CAS  Google Scholar 

  • Shepherd GM. Smell images and the flavour system in the human brain. Nature. 2006;444:316–321.

    Article  CAS  Google Scholar 

  • Small DM, Voss J, Mak YE, Simmons KB, Parrish T, Gitelman D. Experience-dependent neural integration of taste and smell in the human brain. J Neurophysiol. 2004;92:1892–1903.

    Article  Google Scholar 

  • Speirs RL. The effects of interactions between gustatory stimuli on the reflex flow-rate of human parotid saliva. Arch Oral Biol. 1971;16:351–365.

    Article  CAS  Google Scholar 

  • Stevenson RJ, Prescott J. The acquisition of taste properties by odors. Learn Motiv. 1995;26:433–455.

    Article  Google Scholar 

  • Stevenson RJ, Prescott J, Boakes RA. Confusing tastes and smells: how odours can influence the perception of sweet and sour tastes. Chem Senses. 1999;24:627–635.

    Article  CAS  Google Scholar 

  • Takakura H, Shojaku H, Takamoto K, Urakawa S, Nishijo H, Watanabe Y. Cortical hemodynamic responses to intravenous thiamine propyldisulphide administration detected by multichannel near infrared spectroscopy (NIRS) system. Brain Topogr. 2011;24:114–126.

    Article  Google Scholar 

  • Verhagen JV, Engelen L. The neurocognitive bases of human multimodal food perception: sensory integration. Neurosci Biobehav Rev. 2006;30:613–650.

    Article  Google Scholar 

  • Yeomans MR. Olfactory influences on appetite and satiety in humans. Physiol Behav. 2006;89:10–14.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are very grateful to Dr. M. Ishikawa for his constant encouragement. We are indebted to Professor T. Fushiki, from Kyoto University, for his useful suggestions.

Conflict of interest

There is no conflict of interest in this publication.

All procedures and methods were in accordance with the policies and principles described in the Declaration of Helsinki as described in Material and Method.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kana Saito-Iizumi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saito-Iizumi, K., Nakamura, A., Matsumoto, T. et al. Ethylmaltol Odor Enhances Salivary Hemodynamic Responses to Sucrose Taste as Detected by Near-Infrared Spectroscopy. Chem. Percept. 6, 92–100 (2013). https://doi.org/10.1007/s12078-013-9142-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12078-013-9142-3

Keywords

Navigation