Skip to main content

Advertisement

Log in

Olfactory Processing in Children and Young Adults

  • Published:
Chemosensory Perception

Abstract

Because central nervous processing of odorous stimuli in different stages of adolescence has rarely been studied, in this preliminary fMRI investigation, 20 subjects were grouped according to age (children 9–12 years old and young adults 17–20 years old) to build two equally sized samples. Patterns of cerebral activation were compared between both groups following passive nasal stimulation with three odorants. Children mainly showed activation of olfactory cortex, namely, piriform cortex and amygdala. In young adults, enhanced activation was revealed in neocortical areas, suggesting a greater involvement of areas engaged in cognitive integration of olfactory stimuli. However, it is emphasized that additional psychological and developmental confounds should be taken into account in future studies to establish more profound results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anderson AK, Christoff K, Stappen I, Panitz D, Ghahremani DG, Glover G, Gabrieli JD, Sobel N (2003) Dissociated neural representations of intensity and valence in human olfaction. Nat Neurosci 6(2):196–202

    Article  CAS  Google Scholar 

  • Anderson AK, Phelps EA (2002) Is the human amygdala critical for the subjective experience of emotion? Evidence of intact dispositional affect in patients with amygdala lesions. J Cogn Neurosci 14(5):709–720

    Article  Google Scholar 

  • Cerf-Ducastel B, Murphy C (2003) FMRI brain activation in response to odors is reduced in primary olfactory areas of elderly subjects. Brain Res 986(1–2):39–53

    Article  CAS  Google Scholar 

  • Cerf-Ducastel B, Murphy C (2006) Neural substrates of cross-modal olfactory recognition memory: an fMRI study. Neuroimage 31(1):386–396

    Article  Google Scholar 

  • Cerf-Ducastel B, Murphy C (2009) Age-related differences in the neural substrates of cross-modal olfactory recognition memory: an fMRI investigation. Brain Res 1285:88–98

    Article  CAS  Google Scholar 

  • Chopra A, Baur A, Hummel T (2008) Thresholds and chemosensory event-related potentials to malodors before, during, and after puberty: differences related to sex and age. Neuroimage 40(3):1257–1263

    Article  Google Scholar 

  • Ciumas C, Lindstrom P, Aoun B, Savic I (2008) Imaging of odor perception delineates functional disintegration of the limbic circuits in mesial temporal lobe epilepsy. Neuroimage 39(2):578–592

    Article  Google Scholar 

  • Dade LA, Zatorre RJ, Evans AC, Jones-Gotman M (2001) Working memory in another dimension: functional imaging of human olfactory working memory. Neuroimage 14(3):650–660

    Article  CAS  Google Scholar 

  • Damasio AR, Grabowski TJ, Bechara A, Damasio H, Ponto LL, Parvizi J, Hichwa RD (2000) Subcortical and cortical brain activity during the feeling of self-generated emotions. Nat Neurosci 3(10):1049–1056

    Article  CAS  Google Scholar 

  • Distel H, Ayabe-Kanamura S, Martinez-Gomez M, Schicker I, Kobayakawa T, Saito S, Hudson R (1999) Perception of everyday odors—correlation between intensity, familiarity and strength of hedonic judgement. Chem Senses 24(2):191–199

    Article  CAS  Google Scholar 

  • Dolan RJ (2002) Emotion, cognition, and behavior. Science 298(5596):1191–1194

    Article  CAS  Google Scholar 

  • Dorries KM, Schmidt HJ, Beauchamp GK, Wysocki CJ (1989) Changes in sensitivity to the odor of androstenone during adolescence. Dev Psychobiol 22(5):423–435

    Article  CAS  Google Scholar 

  • Doty RL (1997) Studies of human olfaction from the University of Pennsylvania Smell and Taste Center. Chem Senses 22(5):565–586

    Article  CAS  Google Scholar 

  • Doty RL, Shaman P, Applebaum SL, Giberson R, Siksorski L, Rosenberg L (1984) Smell identification ability: changes with age. Science 226(4681):1441–1443

    Article  CAS  Google Scholar 

  • Dyck M, Loughead J, Kellermann T, Boers F, Gur RC, Mathiak K (2011) Cognitive versus automatic mechanisms of mood induction differentially activate left and right amygdala. Neuroimage 54(3):2503–2513

    Article  Google Scholar 

  • Evans WJ, Cui L, Starr A (1995) Olfactory event-related potentials in normal human subjects: effects of age and gender. Electroencephalogr Clin Neurophysiol 95(4):293–301

    Article  CAS  Google Scholar 

  • Ferdon S, Murphy C (2003) The cerebellum and olfaction in the aging brain: a functional magnetic resonance imaging study. Neuroimage 20(1):12–21

    Article  Google Scholar 

  • Fulbright RK, Skudlarski P, Lacadie CM, Warrenburg S, Bowers AA, Gore JC, Wexler BE (1998) Functional MR imaging of regional brain responses to pleasant and unpleasant odors. AJNR Am J Neuroradiol 19(9):1721–1726

    CAS  Google Scholar 

  • Geisler MW, Morgan CD, Covington JW, Murphy C (1999) Neuropsychological performance and cognitive olfactory event-related brain potentials in young and elderly adults. J Clin Exp Neuropsychol 21(1):108–126

    Article  CAS  Google Scholar 

  • Gottfried JA (2006) Smell: central nervous processing. In: Welge-Lüssen A (ed) Hummel T. Karger, Taste and smell. An Update. Basel, pp 44–69

    Google Scholar 

  • Gottfried JA, Deichmann R, Winston JS, Dolan RJ (2002a) Functional heterogeneity in human olfactory cortex: an event-related functional magnetic resonance imaging study. J Neurosci 22(24):10819–10828

    CAS  Google Scholar 

  • Gottfried JA, O'Doherty J, Dolan RJ (2002b) Appetitive and aversive olfactory learning in humans studied using event-related functional magnetic resonance imaging. J Neurosci 22(24):10829–10837

    CAS  Google Scholar 

  • Grabenhorst F, Rolls ET, Margot C, da Silva MA, Velazco MI (2007) How pleasant and unpleasant stimuli combine in different brain regions: odor mixtures. J Neurosci 27(49):13532–13540

    Article  CAS  Google Scholar 

  • Henkin RI, Levy LM (2001) Lateralization of brain activation to imagination and smell of odors using functional magnetic resonance imaging (fMRI): left hemispheric localization of pleasant and right hemispheric localization of unpleasant odors. J Comput Assist Tomogr 25(4):493–514

    Article  CAS  Google Scholar 

  • Herz RS, Eliassen J, Beland S, Souza T (2004) Neuroimaging evidence for the emotional potency of odor-evoked memory. Neuropsychologia 42(3):371–378

    Article  Google Scholar 

  • Hummel T, Heilmann S, Murphy C (2002) Age-related changes of chemosensory functions. In: Rouby C, Schaal B, Dubois D, Gervais R, Holley A (eds) Olfaction, taste, and cognition. Cambridge University Press, New York, pp 441–456

    Chapter  Google Scholar 

  • Hummel T, Krone F, Lundstrom JN, Bartsch O (2005) Androstadienone odor thresholds in adolescents. Horm Behav 47(3):306–310

    Article  CAS  Google Scholar 

  • Hummel T, Sekinger B, Wolf SR, Pauli E, Kobal G (1997) ‘Sniffin' sticks’: olfactory performance assessed by the combined testing of odor identification, odor discrimination and olfactory threshold. Chem Senses 22(1):39–52

    Article  CAS  Google Scholar 

  • Jones RE, Brown CC, Ship JA (1995) Odor identification in young and elderly African–Americans and Caucasians. Spec Care Dentist 15(4):138–143

    Article  CAS  Google Scholar 

  • Kareken DA, Mosnik DM, Doty RL, Dzemidzic M, Hutchins GD (2003) Functional anatomy of human odor sensation, discrimination, and identification in health and aging. Neuropsychology 17(3):482–495

    Article  Google Scholar 

  • Katata K, Sakai N, Doi K, Kawamitsu H, Fujii M, Sugimura K, Nibu K (2009) Functional MRI of regional brain responses to ‘pleasant’ and ‘unpleasant’ odors. Acta Otolaryngol Suppl(562):85–90

    Article  Google Scholar 

  • Knaapila A, Tuorila H, Silventoinen K, Wright MJ, Kyvik KO, Keskitalo K, Hansen J, Kaprio J, Perola M (2008) Environmental effects exceed genetic effects on perceived intensity and pleasantness of several odors: a three-population twin study. Behav Genet 38(5):484–492

    Article  Google Scholar 

  • Kobal G, Klimek L, Wolfensberger M, Gudziol H, Temmel A, Owen CM, Seeber H, Pauli E, Hummel T (2000) Multicenter investigation of 1,036 subjects using a standardized method for the assessment of olfactory function combining tests of odor identification, odor discrimination, and olfactory thresholds. Eur Arch Otorhinolaryngol 257(4):205–211

    Article  CAS  Google Scholar 

  • Konstantinidis I, Hummel T, Larsson M (2006) Identification of unpleasant odors is independent of age. Arch Clin Neuropsychol 21(7):615–621

    Article  Google Scholar 

  • Larsson M, Farde L, Hummel T, Witt M, Lindroth NE, Backman L (2009) Age-related loss of olfactory sensitivity: association to dopamine transporter binding in putamen. Neuroscience 161(2):422–426

    Article  CAS  Google Scholar 

  • Larsson M, Finkel D, Pedersen NL (2000) Odor identification: influences of age, gender, cognition, and personality. J Gerontol B Psychol Sci Soc Sci 55(5):P304–P310

    Article  CAS  Google Scholar 

  • Lascano AM, Hummel T, Lacroix JS, Landis BN, Michel CM (2010) Spatio-temporal dynamics of olfactory processing in the human brain: an event-related source imaging study. Neuroscience 167(3):700–708

    Article  CAS  Google Scholar 

  • Levy LM, Henkin RI, Hutter A, Lin CS, Martins D, Schellinger D (1997) Functional MRI of human olfaction. J Comput Assist Tomogr 21(6):849–856

    Article  CAS  Google Scholar 

  • Lundstrom JN, Hummel T, Olsson MJ (2003) Individual differences in sensitivity to the odor of 4,16-androstadien-3-one. Chem Senses 28(7):643–650

    Article  Google Scholar 

  • Maier A, Chabanet C, Schaal B, Leathwood P, Issanchou S (2007) Food-related sensory experience from birth through weaning: contrasted patterns in two nearby European regions. Appetite 49(2):429–440

    Article  Google Scholar 

  • Maldjian JA, Laurienti PJ, Burdette JH (2004) Precentral gyrus discrepancy in electronic versions of the Talairach atlas. Neuroimage 21(1):450–455

    Article  Google Scholar 

  • Maldjian JA, Laurienti PJ, Kraft RA, Burdette JH (2003) An automated method for neuroanatomic and cytoarchitectonic atlas-based interrogation of fMRI data sets. Neuroimage 19(3):1233–1239

    Article  Google Scholar 

  • Murphy C, Morgan CD, Geisler MW, Wetter S, Covington JW, Madowitz MD, Nordin S, Polich JM (2000) Olfactory event-related potentials and aging: normative data. Int J Psychophysiol 36(2):133–145

    Article  CAS  Google Scholar 

  • Murphy C, Schubert CR, Cruickshanks KJ, Klein BE, Klein R, Nondahl DM (2002) Prevalence of olfactory impairment in older adults. Jama 288(18):2307–2312

    Article  Google Scholar 

  • Natsch A, Schmid J, Flachsmann F (2004) Identification of odoriferous sulfanylalkanols in human axilla secretions and their formation through cleavage of cysteine precursors by a C-S lyase isolated from axilla bacteria. Chem Biodivers 1(7):1058–1072

    Article  CAS  Google Scholar 

  • Nixon A, Mallet AI, Gower DB (1988) Simultaneous quantification of five odorous steroids (16-androstenes) in the axillary hair of men. J Steroid Biochem 29(5):505–510

    Article  CAS  Google Scholar 

  • Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9(1):97–113

    Article  CAS  Google Scholar 

  • Pirogovsky E, Gilbert PE, Murphy C (2006) Source and item memory for odors and objects in children and young adults. Dev Neuropsychol 30(2):739–752

    Article  Google Scholar 

  • Plailly J, Radnovich AJ, Sabri M, Royet JP, Kareken DA (2007) Involvement of the left anterior insula and frontopolar gyrus in odor discrimination. Hum Brain Mapp 28(5):363–372

    Article  Google Scholar 

  • Rolls ET, Kringelbach ML, de Araujo IE (2003) Different representations of pleasant and unpleasant odours in the human brain. Eur J Neurosci 18(3):695–703

    Article  Google Scholar 

  • Royet JP, Koenig O, Gregoire MC, Cinotti L, Lavenne F, Le Bars D, Costes N, Vigouroux M, Farget V, Sicard G, Holley A, Mauguiere F, Comar D, Froment JC (1999) Functional anatomy of perceptual and semantic processing for odors. J Cogn Neurosci 11(1):94–109

    Article  CAS  Google Scholar 

  • Royet JP, Morin-Audebrand L, Cerf-Ducastel B, Haase L, Issanchou S, Murphy C, Fonlupt P, Sulmont-Rosse C, Plailly J (2011) True and false recognition memories of odors induce distinct neural signatures. Front Hum Neurosci 5:65

    Article  Google Scholar 

  • Royet JP, Plailly J, Delon-Martin C, Kareken DA, Segebarth C (2003) fMRI of emotional responses to odors: influence of hedonic valence and judgment, handedness, and gender. Neuroimage 20(2):713–728

    Article  Google Scholar 

  • Royet JP, Zald D, Versace R, Costes N, Lavenne F, Koenig O, Gervais R (2000) Emotional responses to pleasant and unpleasant olfactory, visual, and auditory stimuli: a positron emission tomography study. J Neurosci 20(20):7752–7759

    CAS  Google Scholar 

  • Savic I, Berglund H (2004) Passive perception of odors and semantic circuits. Hum Brain Mapp 21(4):271–278

    Article  Google Scholar 

  • Savic I, Gulyas B (2000) PET shows that odors are processed both ipsilaterally and contralaterally to the stimulated nostril. Neuroreport 11(13):2861–2866

    Article  CAS  Google Scholar 

  • Schaal B, Hummel T, Soussignan R (2004) Olfaction in the fetal and premature infant: functional status and clinical implications. Clin Perinatol 31(2):261–285, vi-vii

    Article  Google Scholar 

  • Smejkal V, Druga R, Tintera J (2003) Olfactory activity in the human brain identified by fMRI. Bratisl Lek Listy 104(6):184–188

    CAS  Google Scholar 

  • Stevenson RJ, Mahmut M, Sundqvist N (2007) Age-related changes in odor discrimination. Dev Psychol 43(1):253–260

    Article  Google Scholar 

  • Stevenson RJ, Repacholi BM (2003) Age-related changes in children's hedonic response to male body odor. Dev Psychol 39(4):670–679

    Article  Google Scholar 

  • Stocker T, Kellermann T, Schneider F, Habel U, Amunts K, Pieperhoff P, Zilles K, Shah NJ (2006) Dependence of amygdala activation on echo time: results from olfactory fMRI experiments. Neuroimage 30(1):151–159

    Article  Google Scholar 

  • Suzuki Y, Critchley HD, Suckling J, Fukuda R, Williams SC, Andrew C, Howard R, Ouldred E, Bryant C, Swift CG, Jackson SH (2001) Functional magnetic resonance imaging of odor identification: the effect of aging. J Gerontol A Biol Sci Med Sci 56(12):M756–M760

    Article  CAS  Google Scholar 

  • Tonoike M, Yamaguchi M, Kaetsu I, Kida H, Seo R, Koizuka I (1998) Ipsilateral dominance of human olfactory activated centers estimated from event-related magnetic fields measured by 122-channel whole-head neuromagnetometer using odorant stimuli synchronized with respirations. Ann N Y Acad Sci 855:579–590

    Article  CAS  Google Scholar 

  • Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, Mazoyer B, Joliot M (2002) Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 15(1):273–289

    Article  CAS  Google Scholar 

  • Wilson RS, Arnold SE, Tang Y, Bennett DA (2006) Odor identification and decline in different cognitive domains in old age. Neuroepidemiology 26(2):61–67

    Article  Google Scholar 

  • Winston JS, Gottfried JA, Kilner JM, Dolan RJ (2005) Integrated neural representations of odor intensity and affective valence in human amygdala. J Neurosci 25(39):8903–8907

    Article  CAS  Google Scholar 

  • Witt M, Hansen A. (2007): Strukturelle und funktionelle Grundlagen des Riechens.

  • Yousem DM, Maldjian JA, Hummel T, Alsop DC, Geckle RJ, Kraut MA, Doty RL (1999) The effect of age on odor-stimulated functional MR imaging. AJNR Am J Neuroradiol 20(4):600–608

    CAS  Google Scholar 

  • Zald DH, Pardo JV (1997) Emotion, olfaction, and the human amygdala: amygdala activation during aversive olfactory stimulation. Proc Natl Acad Sci U S A 94(8):4119–4124

    Article  CAS  Google Scholar 

  • Zatorre RJ, Jones-Gotman M, Rouby C (2000) Neural mechanisms involved in odor pleasantness and intensity judgments. Neuroreport 11(12):2711–2716

    Article  CAS  Google Scholar 

  • Zelano C, Montag J, Johnson B, Khan R, Sobel N (2007) Dissociated representations of irritation and valence in human primary olfactory cortex. J Neurophysiol 97(3):1969–1976

    Article  CAS  Google Scholar 

Download references

Acknowledgement

We are indebted to the students of the Benno Gymnasium Dresden who volunteered for this study and to their parents and teachers who made this possible. This work was supported by the DDELTAS (Dijon-Dresden European Laboratories for Taste and Smell—LEA 549) and underwritten by the Centre National de la Recherche Scientifique-Paris and the Technische Universität Dresden.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Hummel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hummel, T., Hummel, C., Iannilli, E. et al. Olfactory Processing in Children and Young Adults. Chem. Percept. 5, 128–137 (2012). https://doi.org/10.1007/s12078-011-9114-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12078-011-9114-4

Keywords

Navigation