Time for Taste—A Review of the Early Cerebral Processing of Gustatory Perception

Abstract

The first successfully recorded event-related potential (ERP) for taste, one of our basic senses, was published nearly half a century ago. Despite this large time span, surprisingly little is known about the early neural processing of taste perception. Here, we are providing a comprehensive and critical overview of over four decades of research, with a focus on the temporal dimension of cerebral taste processing in healthy humans. For this purpose, we review studies using techniques that permit a high temporal resolution, namely, electroencephalography and magnetoencephalography, ERP, and event-related magnetic fields (ERF). Our current knowledge of taste ERP is interpreted in the context of our understanding of other, nonchemical senses. Gaps in the existing literature are identified and discussed. Finally, we suggest directions for future investigations using gustatory ERP/ERF.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Adrian ED, Matthews BHC (1934) The Berger rhythm: potential changes from the occipital lobes in man. Brain 57(4):355

    Article  Google Scholar 

  2. Ajdukovic D (1984) The relationship between electrode area and sensory qualities in electrical human tongue stimulation. Acta Otolaryngol 98(1–2):152–157

    Article  CAS  Google Scholar 

  3. Baillet S, Friston K, Oostenveld R (2011) Academic software applications for electromagnetic brain mapping using MEG and EEG. Comput Intell Neurosci 2011:972050

    Google Scholar 

  4. Barry MA, Gatenby JC, Zeiger JD, Gore JC (2001) Hemispheric dominance of cortical activity evoked by focal electrogustatory stimuli. Chem Senses 26(5):471–482

    Article  CAS  Google Scholar 

  5. Berger H (1929) Über das Elektroencephalogramm des Menschen. Arch Psychiatr Nervenkr 87:527–570

    Article  Google Scholar 

  6. Busch NA, Debener S, Kranczioch C, Engel AK, Herrmann CS (2004) Size matters: effects of stimulus size, duration and eccentricity on the visual gamma-band response. Clin Neurophysiol 115(8):1810–1820

    Article  Google Scholar 

  7. Busch NA, Fründ I, Herrmann CS (2010) Electrophysiological evidence for different types of change detection and change blindness. J Cogn Neurosci 22(8):1852–1869

    Article  Google Scholar 

  8. Cohen D (1968) Magnetoencephalography: evidence of magnetic fields produced by alpha-rhythm currents. Science 161(843):784–786

    Article  CAS  Google Scholar 

  9. Collura TF (1995) History and evolution of computerized electroencephalography. J Clin Neurophysiol 12(3):214–229

    Article  CAS  Google Scholar 

  10. de Araujo IE, Rolls ET, Kringelbach ML, McGlone F, Phillips N (2003) Taste-olfactory convergence, and the representation of the pleasantness of flavour, in the human brain. Eur J Neurosci 18(7):2059–2068

    Article  Google Scholar 

  11. Ellegard EK, Goldsmith D, Hay KD, Stillman JA, Morton RP (2007) Studies on the relationship between electrogustometry and sour taste perception. Auris Nasus Larynx 34(4):477–480

    Article  Google Scholar 

  12. Fitzsimons M, Sheahan NF, van der Putten W, Malone JF (1999) The application of d.c. electrical stimulation in evoking and recording gustatory brain potentials. Physiol Meas 20(4):385–400

    Article  CAS  Google Scholar 

  13. Fons M, Osterhammel PA (1966) Electrogustometry. Arch Otolaryngol 83(6):538–542

    Article  CAS  Google Scholar 

  14. Franken IH, Huijding J, Nijs IM, van Strien JW (2011) Electrophysiology of appetitive taste and appetitive taste conditioning in humans. Biol Psychol 86(3):273–278

    Article  Google Scholar 

  15. Frey S, Petrides M (1999) Re-examination of the human taste region: a positron emission tomography study. Eur J Neurosci 11(8):2985–2988

    Article  CAS  Google Scholar 

  16. Friederici AD, Pfeifer E, Hahne A (1993) Event-related brain potentials during natural speech processing: effects of semantic, morphological and syntactic violations. Brain Res Cogn Brain Res 1(3):183–192

    Article  CAS  Google Scholar 

  17. Funakoshi M, Kawamura Y (1968) Summated cortical response to taste stimulation in man. Nihon Seirigaku Zasshi 30(4):282–283

    CAS  Google Scholar 

  18. Funakoshi M, Kawamura Y (1971) Summated cerebral evoked responses to taste stimuli in man. Electroencephalogr Clin Neurophysiol 30(3):205–209

    Article  CAS  Google Scholar 

  19. Ganchrow JR, Erickson RP (1970) Neural correlates of gustatory intensity and quality. J Neurophysiol 33(6):768–783

    CAS  Google Scholar 

  20. Grabenhorst F, Rolls ET, Bilderbeck A (2008) How cognition modulates affective responses to taste and flavor: top-down influences on the orbitofrontal and pregenual cingulate cortices. Cereb Cortex 18(7):1549–1559

    Article  Google Scholar 

  21. Hagoort P (2008) Should psychology ignore the language of the brain? Curr Dir Psychol Sci 17(2):96–101

    Article  Google Scholar 

  22. Herrmann CS, Grigutsch M, Busch NA (2005) EEG oscillations and wavelet analysis. In: Handy TC (ed) Event-related potentials—a methods handbook. MIT, Cambridge, pp 229–259

    Google Scholar 

  23. Hummel T, Genow A, Landis BN (2010) Clinical assessment of human gustatory function using event related potentials. J Neurol Neurosurg Psychiatry 81(4):459–464

    Article  Google Scholar 

  24. Iwaki S, Yamamoto C, Tonoike M, Yamamoto T (2004) Rejection of stimulus-related MEG artifacts using independent component analysis. Neurol Clin Neurophysiol 2004:17

  25. Kelling ST, Halpern BP (1986) The physical characteristics of open flow and closed flow taste delivery apparatus. Chemical Senses 11:89–104

    Article  Google Scholar 

  26. Kinomura S, Kawashima R, Yamada K, Ono S, Itoh M, Yoshioka S, Yamaguchi T, Matsui H, Miyazawa H, Itoh H et al (1994) Functional anatomy of taste perception in the human brain studied with positron emission tomography. Brain Res 659(1–2):263–266

    Article  CAS  Google Scholar 

  27. Kobal G (1985) Gustatory evoked potentials in man. Electroencephalogr Clin Neurophysiol 62(6):449–454

    Article  CAS  Google Scholar 

  28. Kobayakawa T, Endo H, Ayabe-Kanamura S, Kumagai T, Yamaguchi Y, Kikuchi Y, Takeda T, Saito S, Ogawa H (1996a) The primary gustatory area in human cerebral cortex studied by magnetoencephalography. Neurosci Lett 212(3):155–158

    Article  CAS  Google Scholar 

  29. Kobayakawa T, Endo H, Saito S, Ayabe-Kanamura S, Kikuchi Y, Yamaguchi Y, Ogawa H, Takeda T (1996b) Trial measurements of gustatory-evoked magnetic fields. Electroencephalogr Clin Neurophysiol Suppl 47:133–141

    CAS  Google Scholar 

  30. Kobayakawa T, Ogawa H, Kaneda H, Ayabe-Kanamura S, Endo H, Saito S (1999) Spatio-temporal analysis of cortical activity evoked by gustatory stimulation in humans. Chem Senses 24(2):201–209

    Article  CAS  Google Scholar 

  31. Kobayakawa T, Wakita M, Saito S, Gotow N, Sakai N, Ogawa H (2005) Location of the primary gustatory area in humans and its properties, studied by magnetoencephalography. Chem Senses 30 Suppl:1i226–1i227

    Google Scholar 

  32. Kobayakawa T, Saito S, Goto N, Ogawa H (2008) Representation of salty taste stimulus concentrations in the primary gustatory area in humans. Chemosensory Perception 1:227–234

    Article  Google Scholar 

  33. Kringelbach ML, O’Doherty J, Rolls ET, Andrews C (2003) Activation of the human orbitofrontal cortex to a liquid food stimulus is correlated with its subjective pleasantness. Cereb Cortex 13(10):1064–1071

    Article  CAS  Google Scholar 

  34. Lawless HT, Stevens DA, Chapman KW, Kurtz A (2005) Metallic taste from electrical and chemical stimulation. Chem Senses 30(3):185–194

    Article  CAS  Google Scholar 

  35. Loucks CA, Doty RL (2004) Effects of stimulation duration on electrogustometric thresholds. Physiol Behav 81(1):1–4

    Article  CAS  Google Scholar 

  36. Luck SJ (2005) An introduction to the event-related potential technique. MIT, Cambridge

    Google Scholar 

  37. Lundström JN, Seven S, Olsson MJ, Schaal B, Hummel T (2006) Olfactory event-related potentials reflect individual differences in odor valence perception. Chem Senses 31(8):705–711

    Article  Google Scholar 

  38. Makeig S, Debener S, Onton J, Delorme A (2004) Mining event-related brain dynamics. Trends Cogn Sci 8(5):204–210

    Article  Google Scholar 

  39. McCabe C, Rolls ET (2007) Umami: a delicious flavor formed by convergence of taste and olfactory pathways in the human brain. Eur J Neurosci 25(6):1855–1864

    Article  Google Scholar 

  40. Michel CM, Murray MM, Lantz G, Gonzalez S, Spinelli L, Grave de Peralta R (2004) EEG source imaging. Clin Neurophysiol 115(10):2195–2222

    Article  Google Scholar 

  41. Min BC, Sakamoto K (1998) Influence of sweet suppressing agent on gustatory brain evoked potentials generated by taste stimuli. Appl Human Sci 17(1):9–17

    Article  CAS  Google Scholar 

  42. Mizoguchi C, Kobayakawa T, Saito S, Ogawa H (2002) Gustatory evoked cortical activity in humans studied by simultaneous EEG and MEG recording. Chem Senses 27(7):629–634

    Article  Google Scholar 

  43. Morgan CD, Geisler MW, Covington JW, Polich J, Murphy C (1999) Olfactory P3 in young and older adults. Psychophysiology 36(3):281–287

    Article  CAS  Google Scholar 

  44. Murayama N, Nakasato N, Hatanaka K, Fujita S, Igasaki T, Kanno A, Yoshimoto T (1996) Gustatory evoked magnetic fields in humans. Neurosci Lett 210(2):121–123

    Article  CAS  Google Scholar 

  45. Murray MM, Brunet D, Michel CM (2008) Topographic ERP analyses: a step-by-step tutorial review. Brain Topogr 20(4):249–264

    Article  Google Scholar 

  46. Nunez PL, Srinivasan R (2006) Electric fields of the brain: the neurophysics of EEG. Oxford University Press, New York

    Google Scholar 

  47. O’Doherty J, Rolls ET, Francis S, Bowtell R, McGlone F (2001) Representation of pleasant and aversive taste in the human brain. J Neurophysiol 85(3):1315–1321

    Google Scholar 

  48. Ohla K, Hudry J, le Coutre J (2009) The cortical chronometry of electrogustatory event-related potentials. Brain Topogr 22(2):73–82

    Article  Google Scholar 

  49. Ohla K, Toepel U, le Coutre J, Hudry J (2010) Electrical neuroimaging reveals intensity-dependent activation of human cortical gustatory and somatosensory areas by electric taste. Biol Psychol 85(3):446–455

    Article  Google Scholar 

  50. Onoda K, Kobayakawa T, Ikeda M, Saito S, Kida A (2005) Laterality of human primary gustatory cortex studied by MEG. Chem Senses 30(8):657–666

    Article  Google Scholar 

  51. Picton TW, Bentin S, Berg P, Donchin E, Hillyard SA, Johnson R Jr, Miller GA, Ritter W, Ruchkin DS, Rugg MD, Taylor MJ (2000) Guidelines for using human event-related potentials to study cognition: recording standards and publication criteria. Psychophysiology 37(2):127–152

    Article  CAS  Google Scholar 

  52. Plattig KH (1969) Electric taste. Stimulus intensity dependent evoked brain potentials following electric stimulation of the tongue in humans. Z Biol 116(3):161–211

    CAS  Google Scholar 

  53. Plattig KH, Dazert S, Maeyama T (1988) A new gustometer for computer evaluation of taste responses in men and animals. Acta Otolaryngol Suppl 458:123–128

    Article  CAS  Google Scholar 

  54. Polich J (2007) Updating P300: an integrative theory of P3a and P3b. Clin Neurophysiol 118(10):2128–2148

    Article  Google Scholar 

  55. Pritchard TC, Hamilton RB, Morse JR, Norgren R (1986) Projections of thalamic gustatory and lingual areas in the monkey, Macaca fascicularis. J Comp Neurol 244(2):213–228

    Article  CAS  Google Scholar 

  56. Rapin I, Schimmel H, Tourk LM, Krasnegor NA, Pollak C (1966) Evoked responses to clicks and tones of varying intensity in waking adults. Electroencephalogr Clin Neurophysiol 21(4):335–344

    Article  CAS  Google Scholar 

  57. Rousselet GA, Pernet CR (2011) Quantifying the time course of visual object processing using ERPs: it’s time to up the game. Front Psychol 2:107

    Article  Google Scholar 

  58. Rugg MD, Curran T (2007) Event-related potentials and recognition memory. Trends Cogn Sci 11(6):251–257

    Article  Google Scholar 

  59. Saito S, Endo H, Kobayakawa T, Ayabe-Kanamura S, Kikuchi Y, Takeda T, Ogawa H (1998) Temporal process from receptors to higher brain in taste detection studied by gustatory-evoked magnetic fields and reaction times. Ann N Y Acad Sci 855:493–497

    Article  CAS  Google Scholar 

  60. Schoenfeld MA, Neuer G, Tempelmann C, Schussler K, Noesselt T, Hopf JM, Heinze HJ (2004) Functional magnetic resonance tomography correlates of taste perception in the human primary taste cortex. Neuroscience 127(2):347–353

    Article  CAS  Google Scholar 

  61. Scott TR, Perrotto RS (1980) Intensity coding in pontine taste area: gustatory information is processed similarly throughout rat’s brain stem. J Neurophysiol 44(4):739–750

    CAS  Google Scholar 

  62. Singh PB, Iannilli E, Hummel T (2011) Segregation of gustatory cortex in response to salt and umami taste studied through event-related potentials. Neuroreport 22(6):299–303

    Article  Google Scholar 

  63. Small DM, Zald DH, Jones-Gotman M, Zatorre RJ, Pardo JV, Frey S, Petrides M (1999) Human cortical gustatory areas: a review of functional neuroimaging data. Neuroreport 10(1):7–14

    Article  CAS  Google Scholar 

  64. Spekreijse H, van der Twell LH, Zuidema T (1973) Contrast evoked responses in man. Vision Res 13(8):1577–1601

    Article  CAS  Google Scholar 

  65. Stillman JA, Morton RP, Hay KD, Ahmad Z, Goldsmith D (2003) Electrogustometry: strengths, weaknesses, and clinical evidence of stimulus boundaries. Clin Otolaryngol Allied Sci 28(5):406–410

    Article  CAS  Google Scholar 

  66. Tallon-Baudry, Bertrand (1999) Oscillatory gamma activity in humans and its role in object representation. Trends Cogn Sci 3(4):151–162

    Article  Google Scholar 

  67. Thorpe S, Fize D, Marlot C (1996) Speed of processing in the human visual system. Nature 381(6582):520–522

    Article  CAS  Google Scholar 

  68. Veldhuizen MG, Bender G, Constable RT, Small DM (2007) Trying to detect taste in a tasteless solution: modulation of early gustatory cortex by attention to taste. Chem Senses 32(6):569–581

    Article  Google Scholar 

  69. Veldhuizen MG, Albrecht J, Zelano C, Boesveldt S, Breslin P, Lundström JN (2011) Identification of human gustatory cortex by activation likelihood estimation. Hum Brain Mapp 32:2256–2266

    Article  Google Scholar 

  70. Wada M (2005) Evoked responses to taste stimulation. Int Tinnitus J 11(1):43–47

    Google Scholar 

  71. Yamamoto C, Nagai H, Takahashi K, Nakagawa S, Yamaguchi M, Tonoike M, Yamamoto T (2006) Cortical representation of taste-modifying action of miracle fruit in humans. NeuroImage 33(4):1145–1151

    Article  Google Scholar 

  72. Zald DH, Lee JT, Fluegel KW, Pardo JV (1998) Aversive gustatory stimulation activates limbic circuits in humans. Brain 121:1143–1154

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institute on Deafness and other Communication Disorders—NIDCD (R03DC009869) and the Swedish Research Council (2009-2337) awarded to JNL. The authors are grateful to Andrea Lordan for the valuable comments on an earlier version of this manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Kathrin Ohla.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ohla, K., Busch, N.A. & Lundström, J.N. Time for Taste—A Review of the Early Cerebral Processing of Gustatory Perception. Chem. Percept. 5, 87–99 (2012). https://doi.org/10.1007/s12078-011-9106-4

Download citation

Keywords

  • Taste
  • EEG (ERP)
  • MEG (ERF)
  • Event-related responses