Advertisement

Letters in Spatial and Resource Sciences

, Volume 6, Issue 1, pp 31–44 | Cite as

Simulating housing prices with UrbanSim: predictive capacity and sensitivity analysis

  • Marko Kryvobokov
  • Aurélie Mercier
  • Alain Bonnafous
  • Dominique Bouf
Original Paper

Abstract

Housing prices in the Lyon Urban area are simulated with the land use framework UrbanSim interacting with the transportation model MOSART. We focus on the Real Estate Price Model of the UrbanSim framework, which proposes the ordinary least square regression. In our simulation, the alternative geographically weighted regression methodology is applied. The model of housing prices is calibrated using a nine-year back-casting period. The calibrated model, applied in simulation, provides price dynamics similar to actual one in the very centre of Lyon. Farther from the city centre, where the available data on actual sales exist, simulated prices tend to be understated. Thus, mainly only the most central locations manifest realistic price dynamics. Sensitivity analysis demonstrates the model’s ability to capture changes in employment accessibility on price dynamics.

Keywords

Transportation-land use modelling UrbanSim Real estate price model Geographically weighted regression Validation Sensitivity 

JEL Classification

R150 

Notes

Acknowledgments

The study is a part of the project PLAINSUDD (Innovative Numerical Platforms of Urban Simulation for Sustainable Development) sponsored through French ANR (number ANR-08-VD-00). Generation of synthetic population by Wisinee Wisetjindawat, provision of data on real estate prices by Perval and Pierre-Yves Péguy, and calculation of coordinates of real estate objects by Nicolas Ovtracht is acknowledged. The authors thank Mats Wilhelmsson for his suggestion of a temporal price lag. The paper benefited from the valuable comments of anonymous reviewers.

References

  1. Anselin, L.: Thirty years of spatial econometrics. Pap. Reg. Sci. 89, 3–25 (2010)CrossRefGoogle Scholar
  2. Bonnafous, A., Kryvobokov, M.: Insight into apartment attributes and location with factors and principal components. Int. J. Hous. Mark. Anal. 4, 155–171 (2011)CrossRefGoogle Scholar
  3. Bonnafous, A., Crozet, Y., Mercier, A., Ovtracht, N., Péguy, P.-Y., Puech, F.: MOSART et le projet PLAINSUDD : une plate-forme de modélisation et simulation de l’accessibilité pour l’aide à la décision et l’aménagement du territoire. In: Antoni, J.-P. (ed.) Modéliser la ville : formes urbaines et politiques de transport, pp. 186–210. Economica (2011)Google Scholar
  4. Bonnafous, A., Kryvobokov, M., Bouf, D., Ovtracht, N.: Simulating residential location choice in the Lyon Urban Area. Conference paper, 57th Annual North American Meetings of the Regional Science Association International, Denver, Colorado, 10–13 November (2010)Google Scholar
  5. Briassoulis, H.: Policy-oriented integrated analysis of land-use change: an analysis of data needs. Environ. Manag. 27, 1–11 (2001)CrossRefGoogle Scholar
  6. Brunsdon, C.F., Fotheringham, A.S., Charlton, M.E.: Geographically weighted regression: a method for exploring spatial nonstationarity. Geogr. Anal. 28, 281–298 (1996)CrossRefGoogle Scholar
  7. Chang, J.S.: Models of the relationship between transport and land-use: a review. Transp. Rev. 26, 325–350 (2006)CrossRefGoogle Scholar
  8. de Palma, A., Motamedi, K., Picard, N., Waddell, P.: A model of residential location choice with endogenous housing prices and traffic for the Paris region. Eur. Transp. 31, 67–82 (2005)Google Scholar
  9. de Palma, A., Picard, N., Waddell, P.: Discrete choice model with capacity constraints: an empirical analysis of the housing market of the greater Paris region. J. Urban Econ. 62, 204–230 (2007)CrossRefGoogle Scholar
  10. DiPasquale, D., Somerville, C.T.: Do house price indices based on transacting units represent the entire stock? Evidence from the American housing survey. J. Hous. Econ. 4, 195–229 (1995)CrossRefGoogle Scholar
  11. DiPasquale, D., Wheaton, W.C.: Housing market dynamics and the future of housing prices. J. Urban Econ. 35, 1–27 (1994)Google Scholar
  12. Di Zio, S., Montanari, A., Staniscia, B.: Simulation of urban development in the city of Rome: framework, methodology, and problem solving. J. Transp. Land Use 3, 85–105 (2010)Google Scholar
  13. Felsenstein, D., Ashbel, E.: Simultaneous modelling of developer behavior and land prices in UrbanSim. J. Transp. Land Use 3, 107–127 (2010)Google Scholar
  14. Geurs, K.T., van Wee, B.: Accessibility evaluation of land-use and transport strategies: review and research directions. J. Transp. Geogr. 12, 127–140 (2004)CrossRefGoogle Scholar
  15. Handy, S.L., Niemeier, D.A.: Measuring accessibility: an exploration of issues and alternatives. Environ. Plan. A 29, 1175–1194 (1997)CrossRefGoogle Scholar
  16. Hunt, J.D., Kriger, D.S., Miller, E.J.: Current operational urban land-use-transport modelling frameworks: a review. Transp. Rev. 25, 329–376 (2005)CrossRefGoogle Scholar
  17. Iacono, M., Levinson, D., El-Geneidy, A.: Models of transportation and land use change: a guide to the territory. J. Plan. Lit. 22, 323–340 (2008)CrossRefGoogle Scholar
  18. Kryvobokov, M.: Is it worth identifying service employment (sub)centres when modelling apartment prices? J. Prop. Res. 27, 371–390 (2010)Google Scholar
  19. Löchl, M., Axhausen, K.W.: Modelling hedonic residential rents for land use and transport simulation while considering spatial effects. J. Transp. Land Use 3, 39–63 (2010)Google Scholar
  20. Malpezzi, S.A.: Simple error correction model of house prices. J. Hous. Econ. 8, 27–62 (1999)CrossRefGoogle Scholar
  21. Moeckel, R., Spiekermann, K., Wegener, M.: Creating a Synthetic Population. Conference paper, 8th International Conference on Computers in Urban Planning and Urban Management (CUPUM), Sendai, Japan, 27–29 May. http://www.spiekermann-wegener.com/pub/pdf/CUPUM_2003_Synpop.pdf (2003). Accessed 25 June 2012
  22. Nicolai, T.W., Wang, L., Nagel, K., Waddell, P.: Coupling an Urban Simulation Model with a Travel Model — A First Sensitivity Test. Technical University of Berlin and University of California, Berkeley (2011). (Working paper)Google Scholar
  23. Patterson, Z., Kryvobokov, M., Marchal, F., Bierlaire, M.: Disaggregate model with aggregate data: two UrbanSim applications. J. Transp. Land Use 3, 5–37 (2010)Google Scholar
  24. Waddell, P.: UrbanSim: modelling urban development for land use, transportation and environmental planning. J. Am. Plan. Assoc. 68, 297–314 (2002)CrossRefGoogle Scholar
  25. Waddell, P., Borning, A., Noth, M., Freier, N., Becke, M., Ulfarsson, G.: Microsimulation of urban development and location choices: design and implementation of urbanSim. Networks Spat. Econ. 3, 43–67 (2003)CrossRefGoogle Scholar
  26. Waddell, P., Ulfarsson, G., Franklin, J., Lobb, J.: Incorporating land use in metropolitan transportation planning. Transp. Res. A 41, 382–410 (2007)Google Scholar
  27. Waddell, P., Wang, L., Charlton, B., Olsen, A.: Microsimulating parcel-based land use and activity-based travel: development of a prototype application in San Francisco. J. Transp. Land Use 3, 65–84 (2010)Google Scholar
  28. Wegener, M.: Overview of land-use transport models. In: Hensher, D.A., Button, K. (eds.) Transport Geography and Spatial Systems, Handbook 5 of the Handbook in Transport, pp. 127–146. Pergamon/Elsevier Science, Kidlington, the UK (2004).Google Scholar
  29. Wilhelmsson, M.: An application of a two-equation model to the Swedish housing market. Int. J. Hous. Mark. Anal. 1, 33–51 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Marko Kryvobokov
    • 1
  • Aurélie Mercier
    • 1
  • Alain Bonnafous
    • 1
  • Dominique Bouf
    • 1
  1. 1.Laboratory of Transport Economics (LET)Lyon Cedex 07France

Personalised recommendations