Advertisement

Letters in Spatial and Resource Sciences

, Volume 4, Issue 1, pp 81–90 | Cite as

Visualizing regional income distribution dynamics

  • Sergio J. Rey
  • Alan T. Murray
  • Luc Anselin
Original Paper

Abstract

This paper introduces a new approach to the analysis of regional income distribution dynamics. Drawing on recent advances in geovisualization, we suggest a spatially explicit view of income mobility. Based on the integration of a dynamic local indicator of spatial association (LISA) together with directional statistics, this framework provides new insights on the role of spatial dependence in regional income growth and change. These new approaches are illustrated in a case study of state level incomes in the U.S. over the 1969–2008 period.

Keywords

ESTDA Spatial dynamics Regional convergence 

JEL Classification

C46 R11 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anselin, L.: Local indicators of spatial association-LISA. Geogr. Anal. 27(2), 93–115 (1995) CrossRefGoogle Scholar
  2. Basile, R., Gress, B.: Semi-parametric spatial auto-covariance models of regional growth in Europe. Rég. Dév. 21, 93–118 (2005) Google Scholar
  3. Carrington, A.: Regional convergence in the European Union: a stochastic dominance approach. Int. Reg. Sci. Rev. 29(1), 64 (2006) CrossRefGoogle Scholar
  4. Fischer, M.M., Stumpner, P.: Income distribution dynamics and cross-region convergence in Europe. J. Geogr. Syst. 10, 109–139 (2008) CrossRefGoogle Scholar
  5. López-Bazo, E., Vaya, E., Mora, A.J., Suriñach, J.: Regional economic dynamics and convergence in the European Union. Ann. Reg. Sci. 36, 1–28 (1998) Google Scholar
  6. Magrini, S.: The evolution of income disparities among the regions of the European Union. Reg. Sci. Urban Econ. 29, 257–281 (1999) CrossRefGoogle Scholar
  7. Murray, A.T., Liu, Y., Rey, S.J., Anselin, L.: Exploring movement object patterns. Working paper GeoDa Center for Geospatial Analysis and Computation (2010) Google Scholar
  8. Rey, S.J.: Spatial empirics for economic growth and convergence. Geogr. Anal. 33(3), 195–214 (2001) CrossRefGoogle Scholar
  9. Rey, S.J., Anselin, L.: PySAL: a Python library of spatial analytical methods. Rev. Reg. Stud. 37(1), 5–27 (2007) Google Scholar
  10. Rey, S.J., Le Gallo, J.: Spatial analysis of economic convergence. In: Mills, T., Patterson, K. (eds.) Palgrave Handbook of Econometrics Volume II: Applied Econometrics, pp. 1251–1290. MacMillan, London (2009) Google Scholar
  11. Trede, M.: Making mobility visible: a graphical device. Econ. Lett. 59(1), 77–82 (1998) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.GeoDa Center for Geospatial Analysis and Computation, School of Geographical Sciences and Urban PlanningArizona State UniversityPhoenixUSA

Personalised recommendations