Skip to main content
Log in

Complementary role of peripheral and central autonomic nervous system on insulin-like growth factor-1 activation to prevent fatty liver disease

  • Original Article
  • Published:
Hepatology International Aims and scope Submit manuscript

A Correction to this article was published on 07 March 2024

This article has been updated

Abstract

Background

Insulin-like growth factor-1 (IGF-1) is involved in the pathology of non-alcoholic fatty liver disease (NAFLD) and ameliorates fatty infiltration in the liver. It is activated by growth hormone (GH); however, the role of GH–IGF-1 axis in NAFLD developmental phase has not been well identified. Therefore, in this study, we focused on the effect of IGF-1 in NAFLD pathology and GH excretion activation from the pituitary gland by peripheral autonomic neural pathways relaying liver–brain–gut pathway and by central neuropeptides.

Methods

GH and IGF-1 levels were assessed in wild-type and melanocortin-4 receptor knockout mice upon the development of diet-induced NAFLD. The contribution of the peripheral autonomic nervous system connecting the liver–brain–gut axis was assessed by its blockade using capsaicin and that of the central nervous system was assessed by the expression of hypothalamic brain-derived neurotrophic factor (BDNF) and corticotropin-releasing factor (CRH), which activates GH release from the pituitary gland.

Results

In the NAFLD mouse models, the levels of GH and IGF-1 increased (p < .05). Further, hepatic fatty infiltration was suppressed even under peripheral autonomic nervous system blockade (p < .001), which inhibited gastric ghrelin expression. In mice with peripheral autonomic nervous blockade, hypothalamic BDNF and CRH were inhibited (p < .05), resulting in GH and IGF-1 excretion, whereas other neuropeptides of somatostatin and cortistatin showed no changes. These complementary effects were canceled in melanocortin-4 receptor knockout mice, which diminished BDNF and CRH release control.

Conclusions

Our study demonstrates that the release of IGF-1 by the nervous system is a key factor in maintaining the pathological homeostasis of NAFLD, suggesting its therapeutic potential.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available in the article and/or its supplementary materials.

Change history

Abbreviations

NAFLD:

Non-alcoholic fatty liver disease

SLD:

Steatotic liver disease

GH:

Growth hormone

IGF-1:

Insulin like growth factor-1

SCD:

Standard chow diet

CDAA:

Choline-deficient L-amino-acid-defined diet

HFD:

High fat diet

MC4RKO:

Melanocortin 4 receptor knock out

Cap:

Capsaicin

BDNF:

Brain derived neurotrophic factor

CRH:

Corticotropin-releasing factor

qRT-PCR:

Quantitative real-time polymerase chain reaction

ELISA:

Enzyme-linked immunosorbent assay

ANOVA:

Analysis of variance

H&E:

Hematoxylin and eosin

NS:

No statistical significance

References

  1. Yang J, Hirai Y, Iida K, Ito S, Trumm M, Terada S, et al. Integrated-gut-liver-on-a-chip platform as an in vitro human model of non-alcoholic fatty liver disease. Commun Biol. 2023;6:310. https://doi.org/10.1038/s42003-023-04710-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Wiest R, Albillos A, Trauner M, Bajaj JS, Jalan R. Targeting the gut-liver axis in liver disease. J Hepatol. 2017;67:1084–1103. https://doi.org/10.1016/j.jhep.2017.05.007

    Article  CAS  PubMed  Google Scholar 

  3. Tilg H, Burcelin R, Tremaroli V. Liver tissue microbiome in NAFLD: next step in understanding the gut-liver axis? Gut. 2020;69:1373–1374. https://doi.org/10.1136/gutjnl-2019-320490

    Article  PubMed  Google Scholar 

  4. Kotsiliti E, Leone V, Schuehle S, Govaere O, Li H, Wolf MJ, et al. Intestinal B-cells license metabolic T-cell activation in NASH microbiota/antigen-independently and contribute to fibrosis by IgA-FcR signalling. J Hepatol. 2023;79:296–313. https://doi.org/10.1016/j.jhep.2023.04.037. (Online ahead of print)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Luo L, Chang Y, Sheng L. Gut-liver axis in the progression of nonalcoholic fatty liver disease: from the microbial derivatives-centered perspective. Life Sci. 2023;321: 121614. https://doi.org/10.1016/j.lfs.2023.121614

    Article  CAS  PubMed  Google Scholar 

  6. Rahman K, Desai C, Iyer SS, Thorn NE, Kumar P, Liu Y, et al. Loss of junctional adhesion molecule A promotes severe steatohepatitis in mice on a diet high in saturated fat, fructose, and cholesterol. Gastroenterology. 2016;151:733-746.e12. https://doi.org/10.1053/j.gastro.2016.06.022

    Article  CAS  PubMed  Google Scholar 

  7. Teratani T, Mikami Y, Nakamoto N, Suzuki T, Harada Y, Okabayashi K, et al. The liver-brain-gut neural arc maintains the T(reg) cell niche in the gut. Nature. 2020;585:591–596. https://doi.org/10.1038/s41586-020-2425-3

    Article  CAS  ADS  PubMed  Google Scholar 

  8. Nagoya T, Kamimura K, Inoue R, Ko M, Owaki T, Niwa Y, et al. Ghrelin-insulin-like growth factor-1 axis is activated via autonomic neural circuits in the nonalcoholic fatty liver disease. Neurogastroenterol Motil. 2020;32:e13799. https://doi.org/10.1111/nmo.13799

    Article  PubMed  Google Scholar 

  9. Ko M, Kamimura K, Owaki T, Nagoya T, Sakai N, Nagayama I, et al. Modulation of serotonin in the gut-liver neural axis ameliorates the fatty and fibrotic changes in non-alcoholic fatty liver. Dis Model Mech. 2021;14:dmm048922. https://doi.org/10.1242/dmm.048922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Owaki T, Kamimura K, Ko M, Nagayama I, Nagoya T, Shibata O, et al. Involvement of the liver-gut peripheral neural axis in non-alcoholic fatty liver disease pathologies via hepatic HTR2A. Dis Model Mech. 2022;15:dmm049612. https://doi.org/10.1242/dmm.049612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Inoue R, Kamimura K, Nagoya T, Sakai N, Yokoo T, Goto R, et al. Effect of a neural relay on liver regeneration in mice: activation of serotonin release from the gastrointestinal tract. FEBS Open Bio. 2018;8:449–460. https://doi.org/10.1002/2211-5463.12382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ibrahim SH, Hirsova P, Malhi H, Gores GJ. Animal models of nonalcoholic steatohepatitis: eat, delete, and inflame. Dig Dis Sci. 2016;61:1325–1336. https://doi.org/10.1007/s10620-015-3977-1

    Article  PubMed  Google Scholar 

  13. Vrekoussis T, Chaniotis V, Navrozoglou I, Dousias V, Pavlakis K, Stathopoulos EN, et al. Image analysis of breast cancer immunohistochemistry-stained sections using ImageJ: an RGB-based model. Anticancer Res. 2009;29:4995–4998

    CAS  PubMed  Google Scholar 

  14. Kojima M, Hosoda H, Date Y, Nakazato M, Matsuo H, Kangawa K. Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature. 1999;402:656–660. https://doi.org/10.1038/45230

    Article  CAS  ADS  PubMed  Google Scholar 

  15. Smith RG, Van der Ploeg LH, Howard AD, Feighner SD, Cheng K, Hickey GJ, et al. Peptidomimetic regulation of growth hormone secretion. Endocr Rev. 1997;18:621–645. https://doi.org/10.1210/edrv.18.5.0316

    Article  CAS  PubMed  Google Scholar 

  16. Jeanneteau FD, Lambert WM, Ismaili N, Bath KG, Lee FS, Garabedian MJ, et al. BDNF and glucocorticoids regulate corticotrophin-releasing hormone (CRH) homeostasis in the hypothalamus. Proc Natl Acad Sci. 2012;109:1305–1310. https://doi.org/10.1073/pnas.1114122109

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  17. Givalois L, Naert G, Rage F, Ixart G, Arancibia S, Tapia-Arancibia L. A single brain-derived neurotrophic factor injection modifies hypothalamo-pituitary-adrenocortical axis activity in adult male rats. Mol Cell Neurosci. 2004;27:280–295. https://doi.org/10.1016/j.mcn.2004.07.002

    Article  CAS  PubMed  Google Scholar 

  18. Barbarino A, Corsello SM, Della Casa S, Tofani A, Sciuto R, Rota CA, et al. Corticotropin-releasing hormone inhibition of growth hormone-releasing hormone-induced growth hormone release in man. J Clin Endocrinol Metab. 1990;71:1368–1374. https://doi.org/10.1210/jcem-71-5-1368

    Article  CAS  PubMed  Google Scholar 

  19. Xu B, Goulding EH, Zang K, Cepoi D, Cone RD, Jones KR, et al. Brain-derived neurotrophic factor regulates energy balance downstream of melanocortin-4 receptor. Nat Neurosci. 2003;6:736–742. https://doi.org/10.1038/nn1073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Nishizawa H, Iguchi G, Murawaki A, Fukuoka H, Hayashi Y, Kaji H, et al. Nonalcoholic fatty liver disease in adult hypopituitary patients with GH deficiency and the impact of GH replacement therapy. Eur J Endocrinol. 2012;167:67–74. https://doi.org/10.1530/EJE-12-0252

    Article  CAS  PubMed  Google Scholar 

  21. Ichikawa T, Hamasaki K, Ishikawa H, Ejima E, Eguchi K, Nakao K. Nonalcoholic steatohepatitis and hepatic steatosis in patients with adult onset growth hormone deficiency. Gut. 2003;52:914. https://doi.org/10.1136/gut.52.6.914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Takahashi Y, Iida K, Takahashi K, Yoshioka S, Fukuoka H, Takeno R, et al. Growth hormone reverses non-alcoholic steatohepatitis in a patient with adult growth hormone deficiency. Gastroenterology. 2007;132:938–943. https://doi.org/10.1053/j.gastro.2006.12.024

    Article  CAS  PubMed  Google Scholar 

  23. Takahashi Y. Essential roles of growth hormone (GH) and insulin-like growth factor-I (IGF-I) in the liver. Endocr J. 2012;59:955–962. https://doi.org/10.1507/endocrj.EJ12-0322

    Article  CAS  PubMed  Google Scholar 

  24. Adams LA, Feldstein A, Lindor KD, Angulo P. Nonalcoholic fatty liver disease among patients with hypothalamic and pituitary dysfunction. Hepatology. 2004;39:909–914. https://doi.org/10.1002/hep.20140

    Article  PubMed  Google Scholar 

  25. Arturi F, Succurro E, Procopio C, Pedace E, Mannino GC, Lugara M, et al. Nonalcoholic fatty liver disease is associated with low circulating levels of insulin-like growth factor-I. J Clin Endocrinol Metab. 2011;96:E1640–E1644. https://doi.org/10.1210/jc.2011-1227

    Article  CAS  PubMed  Google Scholar 

  26. Fusco A, Miele L, D’Uonnolo A, Forgione A, Riccardi L, Cefalo C, et al. Nonalcoholic fatty liver disease is associated with increased GHBP and reduced GH/IGF-I levels. Clin Endocrinol (Oxf). 2012;77:531–536. https://doi.org/10.1111/j.1365-2265.2011.04291.x

    Article  CAS  PubMed  Google Scholar 

  27. Sumida Y, Yonei Y, Tanaka S, Mori K, Kanemasa K, Imai S, et al. Lower levels of insulin-like growth factor-1 standard deviation score are associated with histological severity of non-alcoholic fatty liver disease. Hepatol Res. 2015;45:771–781. https://doi.org/10.1111/hepr.12408

    Article  CAS  PubMed  Google Scholar 

  28. Matsumoto R, Fukuoka H, Iguchi G, Nishizawa H, Bando H, Suda K, et al. Long-term effects of growth hormone replacement therapy on liver function in adult patients with growth hormone deficiency. Growth Horm IGF Res. 2014;24:174–179. https://doi.org/10.1016/j.ghir.2014.07.002

    Article  CAS  PubMed  Google Scholar 

  29. Nishizawa H, Iguchi G, Fukuoka H, Takahashi M, Suda K, Bando H, et al. IGF-I induces senescence of hepatic stellate cells and limits fibrosis in a p53-dependent manner. Sci Rep. 2016;6:34605. https://doi.org/10.1038/srep34605

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  30. Sobrevals L, Rodriguez C, Romero-Trevejo JL, Gondi G, Monreal I, Paneda A, et al. Insulin-like growth factor I gene transfer to cirrhotic liver induces fibrolysis and reduces fibrogenesis leading to cirrhosis reversion in rats. Hepatology. 2010;51:912–921. https://doi.org/10.1002/hep.23412

    Article  CAS  PubMed  Google Scholar 

  31. Ren J, Anversa P. The insulin-like growth factor I system: physiological and pathophysiological implication in cardiovascular diseases associated with metabolic syndrome. Biochem Pharmacol. 2015;93:409–417. https://doi.org/10.1016/j.bcp.2014.12.006

    Article  CAS  PubMed  Google Scholar 

  32. Qian Y, Berryman DE, Basu R, List EO, Okada S, Young JA, et al. Mice with gene alterations in the GH and IGF family. Pituitary. 2022;25:1–51. https://doi.org/10.1007/s11102-021-01191-y

    Article  CAS  PubMed  Google Scholar 

  33. Naert G, Ixart G, Tapia-Arancibia L, Givalois L. Continuous I.C.V. infusion of brain-derived neurotrophic factor modifies hypothalamic-pituitary-adrenal axis activity, locomotor activity and body temperature rhythms in adult male rats. Neuroscience. 2006;139:779–789. https://doi.org/10.1016/j.neuroscience.2005.12.028

    Article  CAS  PubMed  Google Scholar 

  34. Ghizzoni L, Vottero A, Street ME, Bernasconi S. Dose-dependent inhibition of growth hormone (GH)-releasing hormone-induced GH release by corticotropin-releasing hormone in prepubertal children. J Clin Endocrinol Metab. 1996;81:1397–1400. https://doi.org/10.1210/jcem.81.4.8636340

    Article  CAS  PubMed  Google Scholar 

  35. Kobayashi H, Ogawa Y, Shintani M, Ebihara K, Shimodahira M, Iwakura T, et al. A novel homozygous missense mutation of melanocortin-4 receptor (MC4R) in a Japanese woman with severe obesity. Diabetes. 2002;51:243–246. https://doi.org/10.2337/diabetes.51.1.243

    Article  CAS  PubMed  Google Scholar 

  36. Itoh M, Suganami T, Nakagawa N, Tanaka M, Yamamoto Y, Kamei Y, et al. Melanocortin 4 receptor-deficient mice as a novel mouse model of nonalcoholic steatohepatitis. Am J Pathol. 2011;179:2454–2463. https://doi.org/10.1016/j.ajpath.2011.07.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Girardet C, Butler AA. Neural melanocortin receptors in obesity and related metabolic disorders. Biochim Biophys Acta. 2014;1842:482–494. https://doi.org/10.1016/j.bbadis.2013.05.004

    Article  CAS  PubMed  Google Scholar 

  38. Baldini G, Phelan KD. The melanocortin pathway and control of appetite-progress and therapeutic implications. J Endocrinol. 2019;241:R1–R33. https://doi.org/10.1530/JOE-18-0596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ciardullo S, Carbone M, Invernizzi P, Perseghin G. Exploring the landscape of steatotic liver disease in the general US population. Liver Int. 2023. https://doi.org/10.1111/liv.15695. (Epub ahead of print)

    Article  PubMed  Google Scholar 

  40. Mikami Y, Tsunoda J, Kiyohara H, Taniki N, Teratani T, Kanai T. Vagus nerve-mediated intestinal immune regulation: therapeutic implications of inflammatory bowel diseases. Int Immunol. 2022;34:97–106. https://doi.org/10.1093/intimm/dxab039

    Article  CAS  PubMed  Google Scholar 

  41. Imai J, Katagiri H. Regulation of systemic metabolism by the autonomic nervous system consisting of afferent and efferent innervation. Int Immunol. 2022;34:67–79. https://doi.org/10.1093/intimm/dxab023

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Takao Tsuchida in the Division of Gastroenterology and Hepatology at Niigata University for his excellent assistance in the histological analyses. The authors would also like to thank Nobuyoshi Fujisawa, Kanako Oda, Shuko Adachi, Toshikuni Sasaoka, and all staff members at the Division of Laboratory Animal Resources at Niigata University.

Funding

The authors declare that they have no conflict of interest. The research in the authors’ laboratories has been supported in part by a Grant-in-Aid for Scientific Research from the Japanese Society for the Promotion of Sciences 18K19537 and 21K19478 to Terai S and Kamimura K, and by a grant from Taiju Life Social Welfare Foundation to Kamimura K.

Author information

Authors and Affiliations

Authors

Contributions

IN, KK, TO, MK, TN, and ST contributed to the study conception and design. Material preparation, data collection, and analysis were performed by IN, KK, TO, MK, TN, YT, MO, TS, AS, TY, HK, and ST. The first draft of the manuscript was written by IN, KK, and ST, and all authors read and approved the final manuscript.

Corresponding author

Correspondence to Kenya Kamimura.

Ethics declarations

Conflict of interest

Itsuo Nagayama, Kenya Kamimura, Takashi Owaki, Masayoshi Ko, Takuro Nagoya, Yuto Tanaka, Marina Ohkoshi, Toru Setsu, Akira Sakamaki, Takeshi Yokoo, Hiroteru Kamimura and Shuji Terai have no competing interests.

Ethical approval

All animal experiments were approved by and conducted in full compliance with the Institutional Animal Care and Use Committee regulations at Niigata University, Niigata, Japan (SA00568, SA01077, and SA01212).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: Figure 5 replaced with revised version.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 56 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nagayama, I., Kamimura, K., Owaki, T. et al. Complementary role of peripheral and central autonomic nervous system on insulin-like growth factor-1 activation to prevent fatty liver disease. Hepatol Int 18, 155–167 (2024). https://doi.org/10.1007/s12072-023-10601-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12072-023-10601-1

Keywords

Navigation