Skip to main content

Advertisement

Log in

Autophagic degradation of MVBs in LSECs promotes Aldosterone induced-HSCs activation

  • Original Article
  • Published:
Hepatology International Aims and scope Submit manuscript

Abstract

Background and aims

The important role of extracellular vesicles (EVs) in liver fibrosis has been confirmed. However, EVs derived from liver sinusoidal endothelial cells (LSECs) in the activation of hepatic stellate cells (HSCs) and liver fibrosis is still unclear. Our previous work demonstrated that Aldosterone (Aldo) may have the potential to regulate EVs from LSECs via autophagy pathway. Thus, we aim to investigate the role of Aldo in the regulation of EVs derived from LSECs.

Approach and results

Using an Aldo-continuous pumping rat model, we observed that Aldo-induced liver fibrosis and capillarization of LSECs. In vitro, transmission electron microscopy (TEM) revealed that stimulation of Aldo led to the upregulation of autophagy and degradation of multivesicular bodies (MVBs) in LSECs. Mechanistically, Aldo upregulated ATP6V0A2, which promoted lysosomal acidification and subsequent autophagy in LSECs. Inhibiting autophagy with si-ATG5 adeno-associated virus (AAV) in LSECs effectively mitigated Aldo-induced liver fibrosis in rats. RNA sequencing and nanoparticle tracking (NTA) analyses of EVs derived from LSECs indicated that Aldo result in a decrease in both the quantity and quality of EVs. We also observed a reduction in the protective miRNA-342-5P in EVs derived from Aldo-treated LSECs, which may play a critical role in HSCs activation. Target knockdown of EV secretion with si-RAB27a AAV in LSECs led to the development of liver fibrosis and HSC activation in rats.

Conclusion

Aldo-induced Autophagic degradation of MVBs in LSECs promotes a decrease in the quantity and quality of EVs derived from LSECs, resulting in the activation of HSCs and liver fibrosis under hyperaldosteronism. Modulating the autophagy level of LSECs and their EV secretion may represent a promising therapeutic approach for treating liver fibrosis.

Graphical abstract

In a physiological state, LSECs transmit inhibitory signals to HSCs via the secretion of EVs that are rich in miR-342-5p. However, in pathological conditions, the elevated levels of serum aldosterone induce capillarization and excessive autophagy in LSECs. This autophagy leads to the degradation of MVBs in LSECs, resulting in a reduction of the number of EVs and miR-342-5p content within EVs. This reduction ultimately leads to a diminished inhibitory signal transmitted to HSCs, thereby activating HSCs and promoting the development of liver fibrosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The RNA sequencing Data of EVs derived from LSECs with or without Aldo stimulation of this study are openly available in NCBI SRA, reference BioProject ID PRJNA982445.

Abbreviations

LSEC:

Liver sinusoidal endothelial cell

HSC:

Hepatic stellate cell

Aldo:

Aldosterone

Spi:

Spironolactone

MR:

Mineralocorticoid receptor

RAAS:

Renin–Angiotensin–Aldosterone system

NO:

Nitric oxide

MVB:

Multivesicular body

EV:

Extracellular vesicle

AAV:

Adeno-associated virus

STAB2:

Stabling 2

ATG5:

Autophagy-related 5

ATP6V0A2:

ATPase H + transporting V0 subunit a2

CD31:

Platelet endothelial cell adhesion molecule 1

LC3B:

Microtubule-associated protein 1 light chain 3 beta

TEM:

Transmission electron microscopy

vWF:

Von Willebrand Factor

Col I:

Collagen I

αSMA:

α-Smooth muscle actin

References

  1. Palmer BF, Clegg DJ. Extrarenal effects of aldosterone on potassium homeostasis. Kidney 2022;3:561–568

    Article  Google Scholar 

  2. Queisser N, Happ K, Link S, Jahn D, Zimnol A, Geier A, et al. Aldosterone induces fibrosis, oxidative stress and DNA damage in livers of male rats independent of blood pressure changes. Toxicol Appl Pharmacol 2014;280:399–407

    Article  CAS  PubMed  Google Scholar 

  3. Luo X, Dan W, Luo X, Zhu X, Wang G, Ning Z, et al. Caveolin 1-related autophagy initiated by aldosterone-induced oxidation promotes liver sinusoidal endothelial cells defenestration. Redox Biol 2017;13:508–521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Schreier B, Wolf A, Hammer S, Pohl S, Mildenberger S, Rabe S, et al. The selective mineralocorticoid receptor antagonist eplerenone prevents decompensation of the liver in cirrhosis. Br J Pharmacol 2018;175:2956–2967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zannad F, Radauceanu A. Effect of MR blockade on collagen formation and cardiovascular disease with a specific emphasis on heart failure. Heart Fail Rev 2005;10:71–78

    Article  CAS  PubMed  Google Scholar 

  6. Gracia-Sancho J, Caparros E, Fernandez-Iglesias A, Frances R. Role of liver sinusoidal endothelial cells in liver diseases. Nat Rev Gastroenterol Hepatol 2021;18:411–431

    Article  PubMed  Google Scholar 

  7. Poisson J, Lemoinne S, Boulanger C, Durand F, Moreau R, Valla D, et al. Liver sinusoidal endothelial cells: physiology and role in liver diseases. J Hepatol 2017;66:212–227

    Article  CAS  PubMed  Google Scholar 

  8. Trautwein C, Friedman SL, Schuppan D, Pinzani M. Hepatic fibrosis: concept to treatment. J Hepatol 2015;62:S15-24

    Article  CAS  PubMed  Google Scholar 

  9. Parola M, Pinzani M. Liver fibrosis: pathophysiology, pathogenetic targets and clinical issues. Mol Aspects Med 2019;65:37–55

    Article  CAS  PubMed  Google Scholar 

  10. DeLeve LD. Liver sinusoidal endothelial cells in hepatic fibrosis. Hepatology 2015;61:1740–1746

    Article  CAS  PubMed  Google Scholar 

  11. Szabo G, Momen-Heravi F. Extracellular vesicles in liver disease and potential as biomarkers and therapeutic targets. Nat Rev Gastroenterol Hepatol 2017;14:455–466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zou W, Lai M, Zhang Y, Zheng L, Xing Z, Li T, et al. Exosome release is regulated by mTORC1. Adv Sci (Weinh) 2019;6:1801313

    Article  PubMed  Google Scholar 

  13. Cabral F, Miller CM, Kudrna KM, Hass BE, Daubendiek JG, Kellar BM, et al. Purification of hepatocytes and sinusoidal endothelial cells from mouse liver perfusion. J Vis Exp 2018. https://doi.org/10.3791/56993

    Article  PubMed  PubMed Central  Google Scholar 

  14. Hammoutene A, Biquard L, Lasselin J, Kheloufi M, Tanguy M, Vion AC, et al. A defect in endothelial autophagy occurs in patients with non-alcoholic steatohepatitis and promotes inflammation and fibrosis. J Hepatol 2020;72:528–538

    Article  CAS  PubMed  Google Scholar 

  15. Gracia-Sancho J, Guixe-Muntet S. The many-faced role of autophagy in liver diseases. J Hepatol 2018;68:593–594

    Article  PubMed  Google Scholar 

  16. Allaire M, Rautou PE, Codogno P, Lotersztajn S. Autophagy in liver diseases: time for translation? J Hepatol 2019;70:985–998

    Article  PubMed  Google Scholar 

  17. Marino G, Niso-Santano M, Baehrecke EH, Kroemer G. Self-consumption: the interplay of autophagy and apoptosis. Nat Rev Mol Cell Biol 2014;15:81–94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ruart M, Chavarria L, Camprecios G, Suarez-Herrera N, Montironi C, Guixe-Muntet S, et al. Impaired endothelial autophagy promotes liver fibrosis by aggravating the oxidative stress response during acute liver injury. J Hepatol 2019;70:458–469

    Article  CAS  PubMed  Google Scholar 

  19. Luo X, Wang D, Zhu X, Wang G, You Y, Ning Z, et al. Autophagic degradation of caveolin-1 promotes liver sinusoidal endothelial cells defenestration. Cell Death Dis 2018;9:576

    Article  PubMed  PubMed Central  Google Scholar 

  20. Marrone G, Shah VH, Gracia-Sancho J. Sinusoidal communication in liver fibrosis and regeneration. J Hepatol 2016;65:608–617

    Article  PubMed  PubMed Central  Google Scholar 

  21. Gracia-Sancho J, Lavina B, Rodriguez-Vilarrupla A, Garcia-Caldero H, Fernández M, Bosch J, et al. Increased oxidative stress in cirrhotic rat livers: a potential mechanism contributing to reduced nitric oxide bioavailability. Hepatology 2008;47:1248–1256

    Article  CAS  PubMed  Google Scholar 

  22. Ford AJ, Jain G, Rajagopalan P. Designing a fibrotic microenvironment to investigate changes in human liver sinusoidal endothelial cell function. Acta Biomater 2015;24:220–227

    Article  CAS  PubMed  Google Scholar 

  23. Rockey DC, Chung JJ. Reduced nitric oxide production by endothelial cells in cirrhotic rat liver: endothelial dysfunction in portal hypertension. Gastroenterology 1998;114:344–351

    Article  CAS  PubMed  Google Scholar 

  24. Kumar S, Duan Q, Wu R, Harris EN, Su Q. Pathophysiological communication between hepatocytes and non-parenchymal cells in liver injury from NAFLD to liver fibrosis. Adv Drug Deliv Rev 2021;176: 113869

    Article  CAS  PubMed  Google Scholar 

  25. Xia Y, Zhen L, Li H, Wang S, Chen S, Wang C, et al. MIRLET7BHG promotes hepatocellular carcinoma progression by activating hepatic stellate cells through exosomal SMO to trigger Hedgehog pathway. Cell Death Dis 2021;12:326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Seo W, Eun HS, Kim SY, Yi HS, Lee YS, Park SH, et al. Exosome-mediated activation of toll-like receptor 3 in stellate cells stimulates interleukin-17 production by gammadelta T cells in liver fibrosis. Hepatology 2016;64:616–631

    Article  CAS  PubMed  Google Scholar 

  27. Saha B, Momen-Heravi F, Furi I, Kodys K, Catalano D, Gangopadhyay A, et al. Extracellular vesicles from mice with alcoholic liver disease carry a distinct protein cargo and induce macrophage activation through heat shock protein 90. Hepatology 2018;67:1986–2000

    Article  CAS  PubMed  Google Scholar 

  28. Wang R, Ding Q, Yaqoob U, de Assuncao TM, Verma VK, Hirsova P, et al. Exosome adherence and internalization by hepatic stellate cells triggers sphingosine 1-phosphate-dependent migration. J Biol Chem 2015;290:30684–30696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ye Q, Zhou Y, Zhao C, Xu L, Ping J. Salidroside inhibits CCl(4)-induced liver fibrosis in mice by reducing activation and migration of HSC induced by liver sinusoidal endothelial cell-derived exosomal SphK1. Front Pharmacol 2021;12: 677810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Noltet-‘t Hoen EN, Buermans HP, Waasdorp M, Stoorvogel W, Wauben MH, tHoen PA. Deep sequencing of RNA from immune cell-derived vesicles uncovers the selective incorporation of small non-coding RNA biotypes with potential regulatory functions. Nucleic Acids Res 2012;40:9272–9285

    Article  PubMed  Google Scholar 

  31. Luo W, Meng Y, Ji HL, Pan CQ, Huang S, Yu CH, et al. Spironolactone lowers portal hypertension by inhibiting liver fibrosis, ROCK-2 activity and activating NO/PKG pathway in the bile-duct-ligated rat. PLoS One 2012;7: e34230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Li Y, Zhang Y, Chen T, Huang Y, Zhang Y, Geng S, et al. Role of aldosterone in the activation of primary mice hepatic stellate cell and liver fibrosis via NLRP3 inflammasome. J Gastroenterol Hepatol 2020;35:1069–1077

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (grant number 81670556 and 82170641 to Xu Li), Guangdong Science and Technology Project (grant number 2017B020209003 and 2021A1515012595 to Xu Li), The Youth Fund of National Natural Science Foundation of China (grant number 82100660 to Yang Li, 81700541 to Zuowei Ning), and China postdoctoral Science Foundation (grant number 2021M691458 to Yang Li).

Author information

Authors and Affiliations

Authors

Contributions

XL, YL, and YM designed and supervised the study. XL, YL and ZN acquired funding. TC and YZ performed the experiments. TC, YZ, YZ, and YL analyzed the data. JW, JL, JG, and QX collected samples and clinical information. TC drafted the manuscript. XL, YL, and YM reviewed the manuscript.

Corresponding authors

Correspondence to Ying Meng, Yang Li or Xu Li.

Ethics declarations

Conflict of interest

Tingting Chen, Yan Zhang, Yijie Zhang, Zuowei Ning, Qihan Xu, Ying Lin, Jiacheng Gong, Jierui Li, Zhuoer Chen, Ying Meng, Yang Li and Xu Li declares have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4571 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, T., Zhang, Y., Zhang, Y. et al. Autophagic degradation of MVBs in LSECs promotes Aldosterone induced-HSCs activation. Hepatol Int 18, 273–288 (2024). https://doi.org/10.1007/s12072-023-10559-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12072-023-10559-0

Keywords

Navigation