Abstract
Background and aims
Observational and Mendelian randomization (MR) studies have identified several modifiable risk factors of cholelithiasis. However, there is limited evidence about the causal effect of blood metabolites on the cholelithiasis risk.
Methods
To have a comprehensive understanding to causal relations between blood metabolites and cholelithiasis, for the primary discovery, we applied two MR methods to explore the associations between 249 circulating metabolites and cholelithiasis. For secondary validations, we replicated the examinations using another metabolic dataset with 123 metabolites. The summary statistics of cholelithiasis were retrieved from FinnGen Consortium Release 5 and UK Biobank. Inverse-variance weighted, weight median and MR-egger methods were used for calculating causal estimates. Furthermore, Bayesian model averaging MR (MR-BMA) method was employed to detect the dominant causal metabolic traits with adjustment for pleiotropy effects.
Results
In the primary analysis, sphingomyelin showed consistent protective causal associations with cholelithiasis; while plasma cholesterol-associated traits showed generally inverse correlation with cholelithiasis risk. Notably, large numbers of traits within the (un)saturated fatty acid category demonstrated significant causal effects. Secondary analyses demonstrated similar results, with traits related to the levels of bisallylic groups in fatty acids showing protective effects. Lastly, MR-BMA analyses discovered that the degree of unsaturation plays a predominant role in reducing the risk of cholelithiasis.
Conclusion
Our MR study provides a complete atlas of associations between plasma metabolites on cholelithiasis risk. It highlighted that genetically predicted sphingomyelin and degree of unsaturation of fatty acid were causally associated with the reduced risk of cholelithiasis.
Graphical abstract

This is a preview of subscription content,
to check access.


Data availability
The summary statistics of GWAS dataset for metabolic traits can be accessed from IEU open GWAS project (https://gwas.mrcieu.ac.uk/datasets/) or MR-Base (https://www.mrbase.org/) website under the accession ID met-d and met-c. The summary-level results of cholelithiasis datasets can be obtained from FinnGen Round 5 (https://r5.finngen.fi/). The summary-level results of cholelithiasis from UK BioBank can be obtained from GWAS atlas website (https://atlas.ctglab.nl/traitDB/3675). All analytical results been uploaded to the OSF data respiratory (https://osf.io/dq4fr/).
References
Lammert F, Gurusamy K, Ko CW, et al. Gallstones. Nat Rev Dis Primers. 2016;2:16024
Mhatre S, Richmond RC, Chatterjee N, et al. The Role of Gallstones in Gallbladder Cancer in India: a Mendelian Randomization Study. Cancer Epidemiol Biomark Prev. 2021;30(2):396–403
Shin SY, Fauman EB, Petersen AK, et al. An atlas of genetic influences on human blood metabolites. Nat Genet. 2014;46(6):543–550
Kettunen J, Demirkan A, Wurtz P, et al. Genome-wide study for circulating metabolites identifies 62 loci and reveals novel systemic effects of LPA. Nat Commun. 2016;7:11122
Qiao J, Zhang M, Wang T, Huang S, Zeng P. Evaluating causal relationship between metabolites and six cardiovascular diseases based on GWAS summary statistics. Front Genet. 2021;12: 746677
Sun S, Jiao M, Han C, et al. Causal effects of genetically determined metabolites on risk of polycystic ovary syndrome: a Mendelian randomization study. Front Endocrinol (Lausanne). 2020;11:621
Yang J, Yan B, Zhao B, et al. Assessing the causal effects of human serum metabolites on 5 major psychiatric disorders. Schizophr Bull. 2020;46(4):804–813
Yu XH, Cao RR, Yang YQ, Lei SF. Identification of causal metabolites related to multiple autoimmune diseases. Hum Mol Genet. 2021;31:604
Ahola-Olli AV, Mustelin L, Kalimeri M, et al. Circulating metabolites and the risk of type 2 diabetes: a prospective study of 11,896 young adults from four Finnish cohorts. Diabetologia. 2019;62(12):2298–2309
Soininen P, Kangas AJ, Wurtz P, Suna T, Ala-Korpela M. Quantitative serum nuclear magnetic resonance metabolomics in cardiovascular epidemiology and genetics. Circ Cardiovasc Genet. 2015;8(1):192–206
Watanabe K, Stringer S, Frei O, et al. A global overview of pleiotropy and genetic architecture in complex traits. Nat Genet. 2019;51(9):1339–1348
Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ. 2003;327(7414):557–560
Burgess S, Thompson SG. Erratum to: Interpreting findings from Mendelian randomization using the MR-Egger method. Eur J Epidemiol. 2017;32(5):391–392
Bowden J, Davey Smith G, Haycock PC, Burgess S. Consistent estimation in Mendelian randomization with some invalid instruments using a weighted median estimator. Genet Epidemiol. 2016;40(4):304–314
Bowden J, Del Greco MF, Minelli C, Davey Smith G, Sheehan NA, Thompson JR. Assessing the suitability of summary data for two-sample Mendelian randomization analyses using MR-Egger regression: the role of the I2 statistic. Int J Epidemiol. 2016;45(6):1961–1974
Lord J, Jermy B, Green R, et al. Mendelian randomization identifies blood metabolites previously linked to midlife cognition as causal candidates in Alzheimer’s disease. Proc Natl Acad Sci USA. 2021. https://doi.org/10.1073/pnas.2009808118
Zuber V, Colijn JM, Klaver C, Burgess S. Selecting likely causal risk factors from high-throughput experiments using multivariable Mendelian randomization. Nat Commun. 2020;11(1):29
Hemani G, Zheng J, Elsworth B, et al. The MR-Base platform supports systematic causal inference across the human phenome. Elife. 2018. https://doi.org/10.7554/eLife.34408
Verbanck M, Chen CY, Neale B, Do R. Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases. Nat Genet. 2018;50(5):693–698
Yavorska OO, Burgess S. MendelianRandomization: an R package for performing Mendelian randomization analyses using summarized data. Int J Epidemiol. 2017;46(6):1734–1739
Chen L, Yang H, Li H, He C, Yang L, Lv G. Insights into modifiable risk factors of cholelithiasis: a Mendelian randomization study. Hepatology. 2021;75:785–796
Wang DQ, Carey MC. Therapeutic uses of animal biles in traditional Chinese medicine: an ethnopharmacological, biophysical chemical and medicinal review. World J Gastroenterol. 2014;20(29):9952–9975
Selevich MI, Rusin IV, Lelevich VV, Garelik PV. The indices of lipid metabolism in the blood plasma of patients with chronic calculous cholecystitis. Ter Arkh. 1998;70(2):46–48
Konikoff FM, Cohen DE, Carey MC. Phospholipid molecular species influence crystal habits and transition sequences of metastable intermediates during cholesterol crystallization from bile salt-rich model bile. J Lipid Res. 1994;35(1):60–70
Scobey MW, Johnson FL, Parks JS, Rudel LL. Dietary fish oil effects on biliary lipid secretion and cholesterol gallstone formation in the African green monkey. Hepatology. 1991;14(4 Pt 1):679–684
Cho SM, Park JA, Kim NH, et al. Effect of eicosapentaenoic acid on cholesterol gallstone formation in C57BL/6J mice. Mol Med Rep. 2015;11(1):362–366
Jonnalagadda SS, Trautwein EA, Hayes KC. Dietary fats rich in saturated fatty acids (12:0, 14:0, and 16:0) enhance gallstone formation relative to monounsaturated fat (18:1) in cholesterol-fed hamsters. Lipids. 1995;30(5):415–424
Campos-Perez W, Perez-Robles M, Rodriguez-Echevarria R, et al. High dietary omega-6:omega-3 PUFA ratio and simple carbohydrates as a potential risk factors for gallstone disease: a cross-sectional study. Clin Res Hepatol Gastroenterol. 2021;46:101802
Compagnucci AB, Perroud HA, Batalles SM, et al. A nested case-control study on dietary fat consumption and the risk for gallstone disease. J Hum Nutr Diet. 2016;29(3):338–344
Tsai CJ, Leitzmann MF, Willett WC, Giovannucci EL. The effect of long-term intake of cis unsaturated fats on the risk for gallstone disease in men: a prospective cohort study. Ann Intern Med. 2004;141(7):514–522
Acknowledgements
The authors thank all participants and investigators for the contributions of GWAS data.
Funding
This study is supported by the Fundamental Research Funds for the Center Universities (3332021007).
Author information
Authors and Affiliations
Contributions
JRM, LJJ, ZYL and XYB conceptualized and designed the study, analyzed the data and wrote the manuscript. XW, NZ and YZW helped analyze the data. All authors read and approved the final manuscript.
Corresponding author
Ethics declarations
Conflict of interest
Jiarui Mi, Lingjuan Jiang, Zhengye Liu, Xia Wu, Nan Zhao, Yuanzhuo Wang, Xiaoyin Bai declare no conflict of interest.
Animal research
Not applicable.
Consent to participate
Not applicable.
Consent to publish
Not applicable.
Clinical trials registration
Not applicable.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Mi, J., Jiang, L., Liu, Z. et al. Identification of blood metabolites linked to the risk of cholelithiasis: a comprehensive Mendelian randomization study. Hepatol Int 16, 1484–1493 (2022). https://doi.org/10.1007/s12072-022-10360-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12072-022-10360-5