Abstract
NAFLD is a spectrum of liver disease starting with fatty liver at one end of the spectrum and cirrhosis or liver cancer at the other end. Worldwide, NAFLD has become one of the most common liver diseases and it has also become one of the leading indications for liver transplantation. Our understanding of the NAFLD epidemiology, pathogenesis and its progression to cirrhosis has improved over the last 2 decades. Currently, however, there are no FDA-approved treatment options for fibrosis resulting from NAFLD. A number of compounds targeting multiple pathways involved in the progression of NAFLD are currently in phase 2–3 trials. In this review, we will briefly discuss the epidemiology, the pathogenesis and the current status of treatment of NAFLD.
This is a preview of subscription content, access via your institution.


References
Younossi ZM, Koenig AB, Abdelatif D, Fazel Y, Henry L, Wymer M. Global epidemiology of nonalcoholic fatty liver disease-meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology 2016;64(1):73–84
Diehl AM, Day C. Cause, pathogenesis, and treatment of nonalcoholic steatohepatitis. N Engl J Med 2017;377(21):2063–2072
Angulo P, Machado MV, Diehl AM. Fibrosis in nonalcoholic fatty liver disease: mechanisms and clinical implications. Semin Liver Dis 2015;35(2):132–145
Argo CK, Northup PG, Al-Osaimi AM, Caldwell SH. Systematic review of risk factors for fibrosis progression in non-alcoholic steatohepatitis. J Hepatol 2009;51(2):371–379
Younossi ZM, Stepanova M, Rafiq N, Makhlouf H, Younoszai Z, Agrawal R, et al. Pathologic criteria for nonalcoholic steatohepatitis: interprotocol agreement and ability to predict liver-related mortality. Hepatology 2011;53(6):1874–1882
Dulai PS, Singh S, Patel J, Soni M, Prokop LJ, Younossi ZR. Increased risk of mortality by fibrosis stage in nonalcoholic fatty liver disease: systematic review and meta-analysis. Hepatology 2017;65(5):1557–1565
Ekstedt M, Hagstrom H, Nasr P, Fredrikson M, Stal P, Kechagias S, et al. Fibrosis stage is the strongest predictor for disease-specific mortality in NAFLD after up to 33 years of follow-up. Hepatology 2015;61:1547–1554
McPherson S, Hardy T, Henderson E, Burt AD, Day CP, Anstee QM. Evidence of NAFLD progression from steatosis to fibrosing-steatohepatitis using paired biopsies: implications for prognosis and clinical management. J Hepatol 2015;62(5):1148–1155
Wong VW, Wong GL, Choi PC, Chan AW, Li MK, Chan HY, et al. Disease progression of non-alcoholic fatty liver disease: a prospective study with paired liver biopsies at 3 years. Gut 2010;59:969–74
Roskilly A, Hicks A, Taylor E, Jones R, Parker R, Rowe I. Slow fibrosis progression rates in placebo-treated randomized controlled trial participants with non-alcoholic steatohepatitis predict low rates of cirrhosis development. Hepatology 2018;68:21A–22A
Estes C, Anstee QM, Arias-Loste MT, Bantel H, Bellentani S, Caballeria J, et al. Modeling NAFLD disease burden in China, France, Germany, Italy, Japan, Spain, United Kingdom, and United States for the period 2016–2030. J Hepatol 2018;69(4):896–904
Diehl AM, Day C. Cause, pathogenesis, and treatment of nonalcoholic steatohepatitis. N Engl J Med 2017;377(21):2063–2072
Buzzetti E, Pinzani M, Tsochatzis EA. The multiple-hit pathogenesis of non-alcoholic fatty liver disease (NAFLD). Metabolism 2016;65(8):1038–1048
Bataller R, Brenner DA. Liver fibrosis. J Clin Invest. 2005;115(4):1100
Friedman SL. Hepatic stellate cells: protean, multifunctional, and enigmatic cells of the liver. Physiol Rev 2008;88(1):125–172
Schuppan D, Surabattula R, Wang XY. Determinants of fibrosis progression and regression in NASH. J Hepatol 2018;68(2):238–250
Gupta S, Takebe N, Lorusso P. Targeting the Hedgehog pathway in cancer. Ther Adv Med Oncol 2010;2(4):237–250
Angulo P, Machado MV, Diehl AM. Fibrosis in nonalcoholic Fatty liver disease: mechanisms and clinical implications. Semin Liver Dis 2015;35(2):132–145
Choi SS, Omenetti A, Witek RP, Moylan CA, Syn WK, Jung Y, et al. Hedgehog pathway activation and epithelial-to-mesenchymal transitions during myofibroblastic transformation of rat hepatic cells in culture and cirrhosis. Am J Physiol Gastrointest Liver Physiol. 2009;297(6):G1093–G1106
Omenetti A, Diehl AM. Hedgehog signaling in cholangiocytes. Curr Opin Gastroenterol 2011;27(3):268–275
Haruna Y, Saito K, Spaulding S, Nalesnik MA, Gerber MA. Identification of bipotential progenitor cells in human liver development. Hepatology 1996;23(3):476–481
DeLeve LD. Liver sinusoidal endothelial cells in hepatic fibrosis. Hepatology 2015;61:1740–1746
Xie G, Choi SS, Syn WK, Michelotti GA, Swiderska M, Karaca G, et al. Hedgehog signalling regulates liver sinusoidal endothelial cell capillarisation. Gut. 2012;62(2):299–309
Chalasani N, Younossi Z, Lavine JE, Charlton M, Cusi K, Rinella M, et al. The diagnosis and management of nonalcoholic fatty liver disease: Practic eguidance from the American Association for the Study of Liver Diseases. Hepatology. 2018;67(1):328–357
Sanyal AJ, Chalasani N, Kowdley KV, McCullough A, Diehl AM, Bass NM, et al. Pioglitazone, vitamin E, or placebo for nonalcoholic steatohepatitis. N Engl J Med. 2010;362(18):1675–1685
Ali AH, Carey EJ, Lindor KD. Recent advances in the development of farnesoid X receptor agonists. Ann Transl Med 2015;3(1):5
Wang YD, Chen WD, Wang M, Yu D, Forman BM, Huang W. Farnesoid X receptor antagonizes nuclear factor kappaB in hepatic inflammatory response. Hepatology 2008;48(5):1632–1643
Mudaliar S, Henry RR, Sanyal AJ, Morrow L, Marschall HU, Kipnes M, et al. Efficacy and safety of the farnesoid X receptor agonist obeticholic acid in patients with type 2 diabetes and nonalcoholic fatty liver disease. Gastroenterology 2013;145(3):574–582
Neuschwander-Tetri BA, Loomba R, Sanyal AJ, Lavine JE, Van Natta ML, Abdelmalek MF, et al. Farnesoid X nuclear receptor ligand obeticholic acid for non-cirrhotic, non-alcoholic steatohepatitis (FLINT): a multicenter, randomized, placebo-controlled trial. Lancet 2015;385(9972):956–965
Younossi Z, Ratziu V, Loomba R, Rinella M, Anstee Q, Goodman Z, et al. GS-06-positive results from REGENERATE: a phase 3 international, randomized, placebo-controlled study. J Hepatol. 2019;70(1):e5
Budas G, Karnik S, Jonnson T, Shafizadeh T, Watkins S, Breckenridge D. Reduction of liver steatosis and fibrosis with an Ask1 inhibitor in a murine model of NASH is accompanied by improvements in cholesterol, bile acid and lipid metabolism. J Hepatol. 2016;64:S170
Loomba R, Lawitz E, Mantry PS, Jayakumar S, Caldwell SH, Arnold H, et al. The ASK1 inhibitor selonsertib in patients with nonalcoholic steatohepatitis: a randomized, phase 2 trial. Hepatology 2017
Tyagi S, Gupta P, Saini AS, Kaushal C, Sharma S. The peroxisome proliferator-activated receptor: a family of nuclear receptors role in various diseases. J Adv Pharm Technol Res 2011;2(4):236–240
Zingarelli B, Piraino G, Hake PW, O’Connor M, Denenberg A, Fan H, et al. Peroxisome proliferator-activated receptor delta regulates inflammation via NF-{kappa}B signaling in polymicrobial sepsis. Am J Pathol 2010;177(4):1834–1847
Ratziu V, Harrison SA, Francque S, Bedossa P, Lehert P, Serfaty L, et al. GOLDEN-505 Investigator Study Group. Elafibranor, an agonist of the peroxisome proliferator-activated receptor-a and -d, induces resolution of nonalcoholic steatohepatitis without fibrosis worsening. Gastroenterology 2016;150:1147–1159
Roh YS, Seki E. Chemokines and chemokine receptors in the development of NAFLD. Adv Exp Med Biol 2018;1061:45–53
Tamura Y, Sugimoto M, Murayama T, Minami M, Nishikaze Y, Ariyasu H, et al. C–C chemokine receptor 2 inhibitor improves diet-induced development of insulin resistance and hepatic steatosis in mice. J Atheroscler Thromb 2010;17:219–228
Lefebvre E, Moyle G, Reshef R, Richman LP, Thompson M, Hong F, et al. Antifibrotic effects of the dual CCR43/CCR43 antagonist cenicriviroc in animal models of liver and kidney fibrosis. PLoS One 2016;11(6):e0158156
Friedman SL, Ratziu V, Harrison SA, Abdelmalek MF, Aithal GP, Caballeria J, et al. A randomized, placebo-controlled trial of cenicriviroc for treatment of nonalcoholic steatohepatitis with fibrosis. Hepatology. 2018;67(5):1754–1767
Alkhouri N, Carter-Kent C, Feldstein AE. Apoptosis in nonalcoholic fatty liver disease: diagnostic and therapeutic implications. Expert Rev Gastroenterol Hepatol 2011;5(2):201–212
Barreyro FJ, Holod S, Finocchietto PV, Camino AM, Aquino JB, et al. The pan-caspase inhibitor Emricasan(IDN-6556) decreases liver injury and fibrosis in a murine model of non-alcoholic steatohepatitis. Liver Int 2015;35(3):953–966
Frenette CT, Morelli G, Shiffman ML, Frederick RT, Rubin RA, Fallon MB, et al. Emricasan improves liver function in patients with cirrhosis and high model for end-stage liver disease scores compared with placebo. Clin Gastroenterol Hepatol 2019;17(4):774.e4–783.e4
Garcia-Tsao G, Fuchs M, Shiffman M, Borg BB, Pyrsopoulos N, Shetty K, et al. Emricasan (IDN-6556) lowers portal pressure in patients with compensated cirrhosis and severe portal hypertension. Hepatology 2019;69(2):717–728
Armstrong MJ, Gaunt P, Aithal GP, Barton D, Hull D, Parker R, et al. Liraglutide safety and efficacy in patients with non-alcoholic steatohepatitis (LEAN): a multicenter, double-blind, randomized, placebo-controlled phase 2 study. Lancet 2016;387(10019):679–690
Uto Y. Recent progress in the discovery and development of stearoyl CoA desaturase inhibitors. Chem Phys Lipids 2016;197:3–12
Safadi R, Konikoff FM, Mahamid M, Zelber-Sagi S, Halpern M, Gilat T, et al. The fatty acid-bile acid conjugate Aramchol reduces liver fat content in patients with nonalcoholic fatty liver disease. Clin Gastroenterol Hepatol 2014;12(12):2085–2091
Ratziu V, Guevara L, Safadi R, Poordad F, Fuster F, Flores-Figueroa J, et al. One-year results of the global phase 2b randomized placebo-controlled arrest trial of aramchol, a steroyl CoA desaturase inhibitor, in patients with NASH. AASLD Liver Meeting, abstract LB-5, 2018
Li LC, Li J, Gao J. Functions of galectin-3 and its role in fibrotic diseases. J Pharmacol Exp Ther 2014;351(2):336–343
Traber PG, Chou H, Zomer E, Hong F, Klyosov A, Fiel MI, et al. Regression of fibrosis and reversal of cirrhosis in rats by galectin inhibitors in thioacetamide-induced liver disease. PLoS One. 2013;8(10):e75361
Chalasani N, Garcia-Tsao G, Goodman Z, Lawitz E, Abdelmalek M, Rinella M, et al. A multicenter, randomized, double-blind, PLB-controlled trial of Galectin-3 inhibitor (GR-MD-02) in patients with NASH cirrhosis and portal hypertension. J Hepatol 2018;68(Supplement 1):S100–S101
Ishida Y, Nagata K. Hsp47 as a collagen-specific molecular chaperone. Methods Enzymol 2011;499:167–182
Sato Y, Murase K, Kato J, Kobune M, Sato T, Kawano Y, et al. Resolution of liver cirrhosis using vitamin A-coupled liposomes to deliver siRNA against a collagen-specific chaperone. Nat Biotechnol. 2008;26(4):431–442
Soule B, Tirucherai G, Kavita U, Kundu S, Christian R. Safety, tolerability, and pharmacokinetics of BMS-986263/ND-L02-s0201, a novel targeted lipid nanoparticle delivering HSP47 siRNA, in healthy participants: a randomized, placebo-controlled, double-blind, phase 1 study. J Hepatol 2018;68:S112
Colca JR, McDonald WG, McCommis KS, Finck BN. Treating fatty liver disease by modulating mitochondrial pyruvate metabolism. Hepatol Commun 2017;1(3):193–197
McCommis KS, Hodges WT, Brunt EM, Nalbantoglu I, McDonald WG, Holley et al. Targeting the mitochondrial pyruvate carrier attenuates fibrosis in a mouse model of nonalcoholic steatohepatitis. Hepatology 2017;65(5):1543–1556
Liu H, Pang G, Ren J, Zhao Y, Wang J. A novel class of apical sodium–dependent bile salt transporter inhibitors: 1-(2,4-bifluorophenyl)-7-dialkylamino-1,8-naphthyridine-3-carboxamides. Acta Pharm Sin B 2016;7(2):223–229
Rao A, Kosters A, Mells JE, Zhang W, Setchell KD, Amanso AM, et al. Inhibition of ileal bile acid uptake protects against nonalcoholic fatty liver disease in high-fat diet-fed mice. Sci Transl Med 2016;8(357):357ra122
Newsome P, Palmer M, Freilich B, Sheikh M, Sheikh A, Sarles H, et al. Safety, tolerability and efficacy of volixibat, an apical sodium-dependent bile acid transporter inhibitor, in adults with non-alcoholic steatohepatitis: 24-week interim analysis results from a phase 2 study. J Hepatol. 2019;70:e141–e382
Sanyal A, Charles ED, Neuschwander-Tetri BA, Loomba R, Harrison SA, Abdelmalek MF, et al. Pegbelfermin (BMS-986036), a PEGylated fibroblast growth factor 21 analogue, in patients with non-alcoholic steatohepatitis: a randomised, double-blind, placebo-controlled, phase 2a trial. Lancet 2018;392(10165):2705–2717
Harrison SA, Moussa S, Bashir M, Alkhouri N, Frias J, Baum S, et al. MGL-3196, a selective thyroid hormone receptor-beta agonist significantly decreases hepatic fat in NASH patients at 12 weeks, the primary endpoint in a 36 week serial liver biopsy study. J Hepatol. 2018;68:S38
Ikenaga N, Liu SB, Peng ZW, Greenstein AE, French D, Smith V, et al. Dual combination therapy directed against lysyl oxidase‐like 2 (LOXL2) and apoptosis signal-regulating kinase 1 (ASK1) potently inhibits fibrosis and portal hypertension in a new mouse model of PSC‐like liver disease. Hepatology 2015;62(Suppl.):881A
Lawitz E, Gane E, Ruane P, Herring R Younes ZP. A combination of the ACC inhibitor GS-0976 and the nonsteroidal FXR agonist GS-9674 improves hepatic steatosis, biochemistry, and stiffness in patients with non-alcoholic steatohepatitis. J Hepatol 70(Issue 1):e794
Belanger C, Foucart C, Legry V, Brozek J, Noel B. Elafibranor and nitazoxanide synergize to reduce fibrosis in a NASH model. J Hepatol 68:S352–S353
Legry V, Descamps E, Noel B, Foucart C, Degallaix N, Belanger C, et al. Elafibranor, a drug candidate for first line NASH monotherapy and a universal backbone for drug combination treatment. J Hepatol 70(Issue 1):e551
Sanyal AJ. Past, present and future perspectives in nonalcoholic fatty liver disease. Nat Rev Gastroenterol Hepatol 2019;16(6):377–386
Funding
None.
Author information
Authors and Affiliations
Contributions
JJA and PJT contributed to the drafting of the article or critical revision of important intellectual content.
Corresponding author
Ethics declarations
Conflict of interest
Joseph J. Alukal and Paul J. Thuluvath declare that they have no competing interests.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Alukal, J.J., Thuluvath, P.J. Reversal of NASH fibrosis with pharmacotherapy. Hepatol Int 13, 534–545 (2019). https://doi.org/10.1007/s12072-019-09970-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12072-019-09970-3