Skip to main content

Advertisement

Log in

Insulin resistance: mechanism and implications for carcinogenesis and hepatocellular carcinoma in NASH

  • Review Article
  • Published:
Hepatology International Aims and scope Submit manuscript

Abstract

Introduction

The effects of insulin resistance in human diseases are of paramount importance. Since the original proposal by the WHO indicating insulin resistance as the common substrate of the metabolic syndrome, large data are now available on its significance in cardiovascular diseases, nonalcoholic fatty liver disease and cancer risk.

Materials and methods

We reviewed the evidence linking hyperinsulinemia to insulin resistance and ultimately to increased cancer risk. Insulin resistance, by reducing substrate flux along the PI3-K pathway, is followed by compensatory hyperinsulinemia, considered a potential stimulus for cancerogenesis along the MAP-K pathway. Adaptive mechanisms of fat storage, promoted by insulin resistance, chronically maintained in an obesiogenic environment, may lead to oxidative stress and inflammation and modify the immune responses, further increasing the carcinogenic potential. The increased cancer risk associated with obesity, type 2 diabetes and nonalcoholic fatty liver may thus be fueled by hyperinsulinemia. Insulin secretagogs and insulin treatment, by raising circulating insulin levels, further increase cancer risk, whereas insulin sensitizers are associated with decreased cancer risk (all sites) and specifically decrease hepatocellular carcinoma. Likewise, drugs related to the incretin system, which are weight neutral or even reduce whole-body and hepatic fat, improve insulin sensitivity and potentially reduce the cancer risk.

Conclusion

New diabetes treatments might thus help decrease the future burden of diabetes-associated cancer and particularly of hepatocellular carcinoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

ChREBP:

Carbohydrate response element-binding protein

DPP-4i:

Dipeptidyl-peptidase-4 inhibitors

EGP:

Endogenous glucose production

FFA:

Free fatty acid

FPI:

Fasting plasma insulin

G6PC:

Glucose 6-phosphatase

GCKR:

Glucokinase regulatory protein

GLP-1:

Glucagon-like peptide-1

GLUT:

Glucose transporter

HCC:

Hepatocellular carcinoma

IR:

Insulin resistance

LDL:

Low-density lipoprotein

LPL:

Stimulating lipoprotein-lipase

MAP-K:

Mitogen-activated protein kinase

NAFLD:

Nonalcoholic fatty liver disease

PI3-K:

Phosphatidyl-inositol-3-kinase

PPAR:

Peroxisome proliferator-activated receptor

ROS:

Reactive oxygen species

T2DM:

Type 2 diabetes

TZDs:

Thiazolidinediones

VLDL:

Very-low-density lipoprotein

References

  1. WHO Consultation. Definition, diagnosis and classification of diabetes mellitus and its complications. Geneva: World Health Organization; 1999. Report No.: WHO/NCD/NCS/99.2

  2. Rosenfeld L. Insulin: discovery and controversy. Clin Chem 2002;48:2270–2288

    CAS  PubMed  Google Scholar 

  3. Kahn CR. Insulin resistance, insulin insensitivity, and insulin unresponsiveness: a necessary distinction. Metabolism 1978;27:1893–1902

    Article  CAS  PubMed  Google Scholar 

  4. Campbell PJ, Mandarino LJ, Gerich JE. Quantification of the relative impairment in actions of insulin on hepatic glucose production and peripheral glucose uptake in non-insulin-dependent diabetes mellitus. Metabolism 1988;37:15–21

    Article  CAS  PubMed  Google Scholar 

  5. DeFronzo RA, Tobin JD, Andres R. Glucose clamp technique: a method for quantifying insulin secretion and resistance. Am J Physiol 1979;237:E214–223

    CAS  PubMed  Google Scholar 

  6. DeFronzo RA. Pathogenesis of type 2 diabetes mellitus. Med Clin North Am 2004;88:787–835 ix

    Article  CAS  PubMed  Google Scholar 

  7. Saltiel AR, Kahn CR. Insulin signalling and the regulation of glucose and lipid metabolism. Nature 2001;414:799–806

    Article  CAS  PubMed  Google Scholar 

  8. Kim JK, Fillmore JJ, Chen Y, Yu C, Moore IK, Pypaert M, et al. Tissue-specific overexpression of lipoprotein lipase causes tissue-specific insulin resistance. Proc Natl Acad Sci USA 2001;98:7522–7527

    Article  CAS  PubMed  Google Scholar 

  9. DeFronzo RA, Ferrannini E, Simonson DC. Fasting hyperglycemia in non-insulin dependent diabetes mellitus: contributions of excessive hepatic glucose production and impaired tissue glucose uptake. Metabolism 1989;38:387–395

    Article  CAS  PubMed  Google Scholar 

  10. Weyer C, Bogardus C, Pratley RE. Metabolic characteristics of individuals with impaired fasting glucose and/or impaired glucose tolerance. Diabetes 1999;48:2197–2203

    Article  CAS  PubMed  Google Scholar 

  11. Larrain S, Rinella ME. A myriad of pathways to NASH. Clin Liver Dis 2012;16:525–548

    Article  PubMed  Google Scholar 

  12. Loria P, Carulli L, Bertolotti M, Lonardo A. Endocrine and liver interaction: the role of endocrine pathways in NASH. Nat Rev Gastroenterol Hepatol 2009;6:236–234

    Article  CAS  PubMed  Google Scholar 

  13. Bugianesi E, Gastaldelli A, Vanni E, Gambino R, Cassader M, Baldi S, et al. Insulin resistance in non-diabetic patients with non-alcoholic fatty liver disease: sites and mechanisms. Diabetologia 2005;48:634–642

    Article  CAS  PubMed  Google Scholar 

  14. Marchesini G, Brizi M, Bianchi G, Tomassetti S, Bugianesi E, Lenzi M, et al. Nonalcoholic fatty liver disease: a feature of the metabolic syndrome. Diabetes 2001;50:1844–1850

    Article  CAS  PubMed  Google Scholar 

  15. Seppala-Lindroos A, Vehkavaara S, Hakkinen AM, Goto T, Westerbacka J, Sovijarvi A, et al. Fat accumulation in the liver is associated with defects in insulin suppression of glucose production and serum free fatty acids independent of obesity in normal men. J Clin Endocrinol Metab 2002;87:3023–3028

    Article  CAS  PubMed  Google Scholar 

  16. Lonardo A, Bellentani S, Ratziu V, Loria P. Insulin resistance in nonalcoholic steatohepatitis: necessary but not sufficient: death of a dogma from analysis of therapeutic studies? Expert Rev Gastroenterol Hepatol 2011;5:279–289

    Article  PubMed  Google Scholar 

  17. Bugianesi E, Zannoni C, Vanni E, Marzocchi R, Marchesini G. Non-alcoholic fatty liver and insulin resistance: a cause-effect relationship? Dig Liver Dis 2004;36:165–173

    Article  CAS  PubMed  Google Scholar 

  18. Kumashiro N, Erion DM, Zhang D, Kahn M, Beddow SA, Chu X, et al. Cellular mechanism of insulin resistance in nonalcoholic fatty liver disease. Proc Natl Acad Sci USA 2011;108:16381–16385.

    Article  CAS  PubMed  Google Scholar 

  19. George J, Liddle C. Nonalcoholic fatty liver disease: pathogenesis and potential for nuclear receptors as therapeutic targets. Mol Pharm 2008;5:49–59

    Article  CAS  PubMed  Google Scholar 

  20. Samuel VT, Liu ZX, Qu X, Elder BD, Bilz S, Befroy D, et al. Mechanism of hepatic insulin resistance in non-alcoholic fatty liver disease. J Biol Chem 2004;279:32345–32353

    Article  CAS  PubMed  Google Scholar 

  21. Westerbacka J, Lammi K, Hakkinen AM, Rissanen A, Salminen I, Aro A, Yki-Jarvinen H. Dietary fat content modifies liver fat in overweight non-diabetic subjects. J Clin Endocrinol Metab 2005;90:2804–2809

    Article  CAS  PubMed  Google Scholar 

  22. Hudgins LC, Hellerstein M, Seidman C, Neese R, Diakun J, Hirsch J. Human fatty acid synthesis is stimulated by a eucaloric low fat, high carbohydrate diet. J Clin Invest 1996;97:2081–2091

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Agius L. High-carbohydrate diets induce hepatic insulin resistance to protect the liver from substrate overload. Biochem Pharmacol 2013;85:306–312

    Article  CAS  PubMed  Google Scholar 

  24. Tsatsoulis A, Mantzaris MD, Bellou S, Andrikoula M. Insulin resistance: an adaptive mechanism becomes maladaptive in the current environment: an evolutionary perspective. Metabolism 2013;62(5):622–633

    Article  CAS  PubMed  Google Scholar 

  25. Nunn AV, Bell JD, Guy GW. Lifestyle-induced metabolic inflexibility and accelerated ageing syndrome: Insulin resistance, friend or foe? Nutr Metab (Lond) 2009;6:16

    Article  Google Scholar 

  26. Lofgren P, van Harmelen V, Reynisdottir S, Naslund E, Ryden M, Rossner S, et al. Secretion of tumor necrosis factor-alpha shows a strong relationship to insulin-stimulated glucose transport in human adipose tissue. Diabetes 2000;49:688–692

    Article  CAS  PubMed  Google Scholar 

  27. Ibrahim MA, Kelleni M, Geddawy A. Nonalcoholic fatty liver disease: current and potential therapies. Life Sci 2013;92:114–118

    Article  CAS  PubMed  Google Scholar 

  28. Borena W, Strohmaier S, Lukanova A, Bjorge T, Lindkvist B, Hallmans G, et al. Metabolic risk factors and primary liver cancer in a prospective study of 578, 700 adults. Int J Cancer 2012;131:193–200

    Article  CAS  PubMed  Google Scholar 

  29. Welzel TM, Graubard BI, Zeuzem S, El-Serag HB, Davila JA, McGlynn KA. Metabolic syndrome increases the risk of primary liver cancer in the United States: a study in the SEER-Medicare database. Hepatology 2011;54:463–471

    Article  PubMed  Google Scholar 

  30. Paradis V, Zalinski S, Chelbi E, Guedj N, Degos F, Vilgrain V, et al. Hepatocellular carcinomas in patients with metabolic syndrome often develop without significant liver fibrosis: a pathological analysis. Hepatology 2009;49:851–859

    Article  PubMed  Google Scholar 

  31. White DL, Kanwal F, El-Serag HB. Association between nonalcoholic fatty liver disease and risk for hepatocellular cancer, based on systematic review. Clin Gastroenterol Hepatol 2012;10:1342–1359

    Article  PubMed Central  PubMed  Google Scholar 

  32. Camma C, Petta S, Di Marco V, Bronte F, Ciminnisi S, Licata G, et al. Insulin resistance is a risk factor for esophageal varices in hepatitis C virus cirrhosis. Hepatology 2009;49:195–203

    Article  CAS  PubMed  Google Scholar 

  33. Gaia S, Carenzi S, Barilli AL, Bugianesi E, Smedile A, Brunello F, et al. Reliability of transient elastography for the detection of fibrosis in non-alcoholic fatty liver disease and chronic viral hepatitis. J Hepatol 2011;54:64–71

    Article  PubMed  Google Scholar 

  34. Machado MV, Cortez-Pinto H. Non-invasive diagnosis of non-alcoholic fatty liver disease. A critical appraisal. J Hepatol 2013;58:1007–1019

    Article  PubMed  Google Scholar 

  35. Calle EE, Thun MJ, Petrelli JM, Rodriguez C, Heath CW Jr. Body-mass index and mortality in a prospective cohort of U.S. adults. N Engl J Med 1999;341:1097–1105

    Article  CAS  PubMed  Google Scholar 

  36. Calle EE, Kaaks R. Overweight, obesity and cancer: epidemiological evidence and proposed mechanisms. Nat Rev Cancer 2004;4:579–591

    Article  CAS  PubMed  Google Scholar 

  37. Baffy G, Brunt EM, Caldwell SH. Hepatocellular carcinoma in non-alcoholic fatty liver disease: an emerging menace. J Hepatol 2012;56:1384–1391

    Article  PubMed  Google Scholar 

  38. Giovannucci E, Harlan DM, Archer MC, Bergenstal RM, Gapstur SM, Habel LA, et al. Diabetes and cancer: a consensus report. Diabetes Care 2010;33:1674–1685

    Article  PubMed  Google Scholar 

  39. Viollet B, Guigas B, Sanz Garcia N, Leclerc J, Foretz M, Andreelli F. Cellular and molecular mechanisms of metformin: an overview. Clin Sci (Lond) 2012;122:253–270

    Article  CAS  Google Scholar 

  40. Wang C, Wang X, Gong G, Ben Q, Qiu W, Chen Y, et al. Increased risk of hepatocellular carcinoma in patients with diabetes mellitus: A systematic review and meta-analysis of cohort studies. Int J Cancer 2012;130:1639–1648

    Article  CAS  PubMed  Google Scholar 

  41. Marchesini G, Forlani G. Diabetes and hepatocellular cancer risk: not only a matter of hyperglycemia. Hepatology 2012;55:1298–1300

    Article  PubMed  Google Scholar 

  42. Lomonaco R, Sunny NE, Bril F, Cusi K. Nonalcoholic fatty liver disease: current issues and novel treatment approaches. Drugs 2013;73:1–14

    Article  CAS  PubMed  Google Scholar 

  43. Singh S, Singh PP, Singh AG, Murad MH, Sanchez W. Anti-diabetic medications and the risk of hepatocellular cancer: a systematic review and meta-analysis. Am J Gastroenterol 2013;108(6):881–891

    Article  CAS  PubMed  Google Scholar 

  44. Ratziu V, Bellentani S, Cortez-Pinto H, Day C, Marchesini G. A position statement on NAFLD/NASH based on the EASL 2009 special conference. J Hepatol 2010;53:372–384

    Article  PubMed  Google Scholar 

  45. Algire C, Moiseeva O, Deschenes-Simard X, Amrein L, Petruccelli L, Birman E, et al. Metformin reduces endogenous reactive oxygen species and associated DNA damage. Cancer Prev Res (Phila) 2012;5:536–543

    Article  CAS  Google Scholar 

  46. Grisouard J, Dembinski K, Mayer D, Keller U, Muller B, Christ-Crain M. Targeting AMP-activated protein kinase in adipocytes to modulate obesity-related adipokine production associated with insulin resistance and breast cancer cell proliferation. Diabetol Metab Syndr 2011;3:16

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Bhalla K, Hwang BJ, Dewi RE, Twaddel W, Goloubeva OG, Wong KK, et al. Metformin prevents liver tumorigenesis by inhibiting pathways driving hepatic lipogenesis. Cancer Prev Res (Phila) 2012;5:544–552

    Article  CAS  Google Scholar 

  48. Lee MS, Hsu CC, Wahlqvist ML, Tsai HN, Chang YH, Huang YC. Type 2 diabetes increases and metformin reduces total, colorectal, liver and pancreatic cancer incidences in Taiwanese: a representative population prospective cohort study of 800, 000 individuals. BMC Cancer 2011;11:20

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Cariou B, Zair Y, Staels B, Bruckert E. Effects of the new dual PPAR alpha/delta agonist GFT505 on lipid and glucose homeostasis in abdominally obese patients with combined dyslipidemia or impaired glucose metabolism. Diabetes Care 2011;34:2008–2014

    Article  CAS  PubMed  Google Scholar 

  50. Chang CH, Lin JW, Wu LC, Lai MS, Chuang LM, Chan KA. Association of thiazolidinediones with liver cancer and colorectal cancer in type 2 diabetes mellitus. Hepatology 2012;55:1462–1472

    Article  CAS  PubMed  Google Scholar 

  51. Piccinni C, Motola D, Marchesini G, Poluzzi E. Assessing the association of pioglitazone use and bladder cancer through drug adverse event reporting. Diabetes Care 2011;34:1369–1371

    Article  PubMed  Google Scholar 

  52. Nathan DM, Buse JB, Davidson MB, Ferrannini E, Holman RR, Sherwin R, et al. Medical management of hyperglycaemia in type 2 diabetes mellitus: a consensus algorithm for the initiation and adjustment of therapy: a consensus statement from the American Diabetes Association and the European Association for the Study of Diabetes. Diabetologia 2009;52:17–30

    Article  CAS  PubMed  Google Scholar 

  53. Bowker SL, Majumdar SR, Veugelers P, Johnson JA. Increased cancer-related mortality for patients with type 2 diabetes who use sulfonylureas or insulin. Diabetes Care 2006;29:254–258

    Article  PubMed  Google Scholar 

  54. Currie CJ, Poole CD, Jenkins-Jones S, Gale EA, Johnson JA, Morgan CL. Mortality after incident cancer in people with and without type 2 diabetes: impact of metformin on survival. Diabetes Care 2012;35:299–304

    Article  PubMed  Google Scholar 

  55. Wang P, Kang D, Cao W, Wang Y, Liu Z. Diabetes mellitus and risk of hepatocellular carcinoma: a systematic review and meta-analysis. Diabetes Metab Res Rev 2012;28:109–122

    Article  PubMed  Google Scholar 

  56. Smith U, Gale EA. Does diabetes therapy influence the risk of cancer? Diabetologia 2009;52:1699–1708

    Article  CAS  PubMed  Google Scholar 

  57. Tang X, Yang L, He Z, Liu J. Insulin glargine and cancer risk in patients with diabetes: a meta-analysis. PLoS ONE 2012;7:e51814.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Wong P, Weiner MG, Hwang WT, Yang YX. Insulin therapy and colorectal adenomas in patients with diabetes mellitus. Cancer Epidemiol Biomarkers Prev 2012;21:1833–1840

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Chang CH, Lin JW, Wu LC, Lai MS, Chuang LM. Oral insulin secretagogues, insulin, and cancer risk in type 2 diabetes mellitus. J Clin Endocrinol Metab 2012;97:E1170–E1175

    Article  CAS  PubMed  Google Scholar 

  60. Kashi MR, Torres DM, Harrison SA. Current and emerging therapies in nonalcoholic fatty liver disease. Semin Liver Dis 2008;28:396–406

    Article  CAS  PubMed  Google Scholar 

  61. Kenny PR, Brady DE, Torres DM, Ragozzino L, Chalasani N, Harrison SA. Exenatide in the treatment of diabetic patients with non-alcoholic steatohepatitis: a case series. Am J Gastroenterol 2010;105:2707–2709

    Article  PubMed  Google Scholar 

  62. Ding X, Saxena NK, Lin S, Gupta NA, Anania FA. Exendin-4, a glucagon-like protein-1 (GLP-1) receptor agonist, reverses hepatic steatosis in ob/ob mice. Hepatology 2006;43:173–181

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Gupta NA, Mells J, Dunham RM, Grakoui A, Handy J, Saxena NK, et al. Glucagon-like peptide-1 receptor is present on human hepatocytes and has a direct role in decreasing hepatic steatosis in vitro by modulating elements of the insulin signaling pathway. Hepatology 2010;51:1584–1592

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Lee J, Hong SW, Chae SW, Kim DH, Choi JH, Bae JC, et al. Exendin-4 improves steatohepatitis by increasing Sirt1 expression in high-fat diet-induced obese C57BL/6J mice. PLoS ONE 2012;7:e31394

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Tushuizen ME, Bunck MC, Pouwels PJ, van Waesberghe JH, Diamant M, Heine RJ. Incretin mimetics as a novel therapeutic option for hepatic steatosis. Liver Int 2006;26:1015–1017

    Article  PubMed  Google Scholar 

  66. Klonoff DC, Buse JB, Nielsen LL, Guan X, Bowlus CL, Holcombe JH, et al. Exenatide effects on diabetes, obesity, cardiovascular risk factors and hepatic biomarkers in patients with type 2 diabetes treated for at least 3 years. Curr Med Res Opin 2008;24:275–286

    CAS  PubMed  Google Scholar 

  67. Maiztegui B, Borelli MI, Madrid VG, Del Zotto H, Raschia MA, Francini F, et al. Sitagliptin prevents the development of metabolic and hormonal disturbances, increased beta-cell apoptosis and liver steatosis induced by a fructose-rich diet in normal rats. Clin Sci (Lond) 2011;120:73–80

    Article  CAS  Google Scholar 

  68. Iwasaki T, Yoneda M, Inamori M, Shirakawa J, Higurashi T, Maeda S, et al. Sitagliptin as a novel treatment agent for non-alcoholic Fatty liver disease patients with type 2 diabetes mellitus. Hepatogastroenterology 2011;58:2103–105

    Article  CAS  PubMed  Google Scholar 

  69. Elashoff M, Matveyenko AV, Gier B, Elashoff R, Butler PC. Pancreatitis, pancreatic, and thyroid cancer with glucagon-like peptide-1-based therapies. Gastroenterology 2011;141:150–156

    Article  CAS  PubMed  Google Scholar 

  70. Raschi E, Piccinni C, Poluzzi E, Marchesini G, De Ponti F. The association of pancreatitis with antidiabetic drug use: gaining insight through the FDA pharmacovigilance database. Acta Diabetol 2011. doi:10.1007/s00592-011-0340-7

  71. Singh S, Chang HY, Richards TM, Weiner JP, Clark JM, Segal JB. Glucagonlike Peptide 1-based therapies and risk of hospitalization for acute pancreatitis in type 2 diabetes mellitus: a population-based matched case-control study. JAMA Intern Med 2013;73:534–539

    Article  Google Scholar 

Download references

Acknowledgements

The authors have received funding from the European Community’s Seventh Framework Program (FP7/2007–2013) under grant agreement no. HEALTH-F2-2009-241762 for the project FLIP. S.M. is supported by a specific research contract within the same program.

Compliance with Ethical Requirements

The report will present data derived from the literature; no specific experiments were carried out on human or animal subjects requiring Ethical standard statements.

Conflict of interest

Luca Montesi, Arianna Mazzotti, Simona Moscatiello Gabriele Forlani, Giulio Marchesini declare that no conflict of interest exists in relation to the material included in this report.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giulio Marchesini.

Additional information

Based on a lecture given at the Fourth Kolkata Liver Meeting, West Bengal, India, on 16 December 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Montesi, L., Mazzotti, A., Moscatiello, S. et al. Insulin resistance: mechanism and implications for carcinogenesis and hepatocellular carcinoma in NASH. Hepatol Int 7 (Suppl 2), 814–822 (2013). https://doi.org/10.1007/s12072-013-9451-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12072-013-9451-2

Keywords

Navigation