Skip to main content

Advertisement

Log in

Amelioration of hepatic inflammation in a mouse model of NASH using a dithiocarbamate derivative

  • Original Article
  • Published:
Hepatology International Aims and scope Submit manuscript

Abstract

Purpose

The process whereby liver inflammation develops in non-alcoholic steatohepatitis (NASH) is not fully understood. While modification of the inflammatory milieu is an attractive target to prevent the development of hepatocellular injury, most antiinflammatory agents have proven ineffective in this setting. Tetraethylthiuram disulfide (TDSF) is able to induce S-glutathionylation of NF-κB along with critical signaling proteins involved with inflammation, especially when complexed with a heavy metal. For this reason, we hypothesized that administration of TDSF would function to ameliorate necroinflammatory activity in a mouse model of NASH.

Methods

Mice were divided into five groups and received control chow versus a methionine-choline-deficient diet. After 6 weeks of TDSF versus sham gavage, animals were necropsied. Using conventional H&E staining, livers were examined using the Brunt scoring system by a hepatopathologist blinded to treatment groups. Validated mouse primer sets were used for quantitative real-time PCR to evaluate changes in mRNA expression.

Results

Livers treated with TDSF demonstrated a qualitative reduction in lobular inflammation, lipogranuloma formation, and Kupffer cell accumulation, but not steatosis. Significant reductions in inflammatory transcripts for α-1-collagen, TGF-β, Mmp2, MCP-1, and TNF-1α were also observed.

Conclusions

Animals treated with TDSF exhibit a reduction in lobular inflammation that is independent of lipid accumulation when administered MCD diet. Similar reductions are seen in several inflammatory transcripts associated with NASH. Additional work in this area may reveal a therapeutic role for TDSF or similar agents in curtailing inflammatory signaling within the liver.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Leclercq IA, Farrell GC, Sempoux C, dela Pena A, Horsmans Y. Curcumin inhibits NF-kappaB activation and reduces the severity of experimental steatohepatitis in mice. J Hepatol. 2004;41:926–934

    Article  CAS  Google Scholar 

  2. Dela Pena A, Leclercq I, Field J, George J, Jones B, Farrell G. NF-kappaB activation, rather than TNF, mediates hepatic inflammation in a murine dietary model of steatohepatitis. Gastroenterology. 2005;129:1663–1674

    Article  CAS  Google Scholar 

  3. MacDonald GA, Bridle KR, Ward PJ, Walker NI, Houglum K, George DK, Smith JL, et al. Lipid peroxidation in hepatic steatosis in humans is associated with hepatic fibrosis and occurs predominately in acinar zone 3. J Gastroenterol Hepatol. 2001;16:599–606

    Article  CAS  Google Scholar 

  4. Sanyal AJ, Campbell-Sargent C, Mirshahi F, Rizzo WB, Contos MJ, Sterling RK, Luketic VA, et al. Nonalcoholic steatohepatitis: association of insulin resistance and mitochondrial abnormalities. Gastroenterology. 2001;120:1183–1192

    Article  CAS  Google Scholar 

  5. Seki S, Kitada T, Yamada T, Sakaguchi H, Nakatani K, Wakasa K. In situ detection of lipid peroxidation and oxidative DNA damage in non-alcoholic fatty liver diseases. J Hepatol. 2002;37:56–62

    Article  CAS  Google Scholar 

  6. Schreck R, Meier B, Mannel DN, Droge W, Baeuerle PA. Dithiocarbamates as potent inhibitors of nuclear factor kappa B activation in intact cells. J Exp Med. 1992;175:1181–1194

    Article  CAS  Google Scholar 

  7. Nobel CI, Kimland M, Lind B, Orrenius S, Slater AF. Dithiocarbamates induce apoptosis in thymocytes by raising the intracellular level of redox-active copper. J Biol Chem. 1995;270:26202–26208

    Article  CAS  Google Scholar 

  8. Brar SS, Grigg C, Wilson KS, Holder WD Jr, Dreau D, Austin C, Foster M, et al. Disulfiram inhibits activating transcription factor/cyclic AMP-responsive element binding protein and human melanoma growth in a metal-dependent manner in vitro, in mice and in a patient with metastatic disease. Mol Cancer Ther. 2004;3:1049–1060

    CAS  PubMed  Google Scholar 

  9. Kim CH, Kim JH, Moon SJ, Hsu CY, Seo JT, Ahn YS. Biphasic effects of dithiocarbamates on the activity of nuclear factor-kappaB. Eur J Pharmacol. 2000;392:133–136

    Article  CAS  Google Scholar 

  10. Bartoli GM, Muller A, Cadenas E, Sies H. Antioxidant effect of diethyldithiocarbamate on microsomal lipid peroxidation assessed by low-level chemiluminescence and alkane production. FEBS Lett. 1983;164:371–374

    Article  CAS  Google Scholar 

  11. Burkitt MJ, Bishop HS, Milne L, Tsang SY, Provan GJ, Nobel CS, Orrenius S, et al. Dithiocarbamate toxicity toward thymocytes involves their copper-catalyzed conversion to thiuram disulfides, which oxidize glutathione in a redox cycle without the release of reactive oxygen species. Arch Biochem Biophys. 1998;353:73–84

    Article  CAS  Google Scholar 

  12. Lutz LM, Glende EA Jr, Recknagel RO. Protection by diethyldithiocarbamate against carbon tetrachloride lethality in rats and against carbon tetrachloride-induced lipid peroxidation in vitro. Biochem Pharmacol. 1973;22:1729–1734

    Article  CAS  Google Scholar 

  13. Kugelmas M, Hill DB, Vivian B, Marsano L, McClain CJ. Cytokines and NASH: a pilot study of the effects of lifestyle modification and vitamin E. Hepatology. 2003;38:413–419

    Article  CAS  Google Scholar 

  14. Haukeland JW, Damas JK, Konopski Z, Loberg EM, Haaland T, Goverud I, Torjesen PA, et al. Systemic inflammation in nonalcoholic fatty liver disease is characterized by elevated levels of CCL2. J Hepatol. 2006;44:1167–1174

    Article  CAS  Google Scholar 

  15. Zhang S, Wang J, Liu Q, Harnish DC. Farnesoid X receptor agonist WAY-362450 attenuates liver inflammation and fibrosis in murine model of non-alcoholic steatohepatitis. J Hepatol. 2009;51:380–388

    Article  CAS  Google Scholar 

  16. Zhang Y, Castellani LW, Sinal CJ, Gonzalez FJ, Edwards PA. Peroxisome proliferator-activated receptor-gamma coactivator 1alpha (PGC-1alpha) regulates triglyceride metabolism by activation of the nuclear receptor FXR. Genes Dev. 2004;18:157–169

    Article  CAS  Google Scholar 

  17. Savkur RS, Bramlett KS, Michael LF, Burris TP. Regulation of pyruvate dehydrogenase kinase expression by the farnesoid X receptor. Biochem Biophys Res Commun. 2005;329:391–396

    Article  CAS  Google Scholar 

  18. Anstee QM, Goldin RD. Mouse models in non-alcoholic fatty liver disease and steatohepatitis research. Int J Exp Pathol. 2006;87:1–16

    Article  CAS  Google Scholar 

  19. Brunt EM, Janney CG, Di Bisceglie AM, Neuschwander-Tetri BA, Bacon BR. Nonalcoholic steatohepatitis: a proposal for grading and staging the histological lesions. Am J Gastroenterol. 1999;94:2467–2474

    Article  CAS  Google Scholar 

  20. Searle JKJ, Halliday JW, Powell LW. Iron Storage Disease. London: Churchill Livingstone; 1994.

  21. Yang F, Huang X, Yi T, Yen Y, Moore DD, Huang W. Spontaneous development of liver tumors in the absence of the bile acid receptor farnesoid X receptor. Cancer Res. 2007;67:863–867

    Article  CAS  Google Scholar 

  22. Day CP. Pathogenesis of steatohepatitis. Best Pract Res Clin Gastroenterol. 2002;16:663–678

    Article  CAS  Google Scholar 

  23. Marra F, Gastaldelli A, Svegliati BG, Tell G, Tiribelli C. Molecular basis and mechanisms of progression of non-alcoholic steatohepatitis. Trends Mol Med. 2008;14:72–81

    Article  CAS  Google Scholar 

  24. Cai D, Yuan M, Frantz DF, Melendez PA, Hansen L, Lee J, Shoelson SE. Local and systemic insulin resistance resulting from hepatic activation of IKK-beta and NF-kappaB. Nat Med. 2005;11:183–190

    Article  CAS  Google Scholar 

  25. Wullaert A, van Loo G, Heyninck K, Beyaert R. Hepatic tumor necrosis factor signaling and nuclear factor-kappaB: effects on liver homeostasis and beyond. Endocr Rev. 2007;28:365–386

    Article  CAS  Google Scholar 

  26. Wobser H, Dorn C, Weiss TS, Amann T, Bollheimer C, Buttner R, Scholmerich J, et al. Lipid accumulation in hepatocytes induces fibrogenic activation of hepatic stellate cells. Cell Res. 2009;19:996–1005

    Article  CAS  Google Scholar 

  27. Erl W, Weber C, Hansson GK. Pyrrolidine dithiocarbamate-induced apoptosis depends on cell type, density, and the presence of Cu(2+) and Zn(2+). Am J Physiol Cell Physiol. 2000;278:C1116–C1125

    Article  CAS  Google Scholar 

  28. Johansson B. A review of the pharmacokinetics and pharmacodynamics of disulfiram and its metabolites. Acta Psychiatr Scand Suppl. 1992;369:15–26

    Article  CAS  Google Scholar 

  29. Costantini P, Belzacq AS, Vieira HL, Larochette N, de Pablo MA, Zamzami N, Susin SA, et al. Oxidation of a critical thiol residue of the adenine nucleotide translocator enforces Bcl-2-independent permeability transition pore opening and apoptosis. Oncogene. 2000;19:307–314

    Article  CAS  Google Scholar 

  30. Brennan P, O’Neill LA. 2-Mercaptoethanol restores the ability of nuclear factor kappa B (NF kappa B) to bind DNA in nuclear extracts from interleukin 1-treated cells incubated with pyrollidine dithiocarbamate (PDTC). Evidence for oxidation of glutathione in the mechanism of inhibition of NF kappa B by PDTC. Biochem J. 1996;320(Pt 3):975–981

    Article  Google Scholar 

  31. Nobel CS, Kimland M, Nicholson DW, Orrenius S, Slater AF. Disulfiram is a potent inhibitor of proteases of the caspase family. Chem Res Toxicol. 1997;10:1319–1324

    Article  CAS  Google Scholar 

  32. Devalaraja MN, McClain CJ, Barve S, Vaddi K, Hill DB. Increased monocyte MCP-1 production in acute alcoholic hepatitis. Cytokine. 1999;11:875–881

    Article  CAS  Google Scholar 

  33. Washington K, Wright K, Shyr Y, Hunter EB, Olson S, Raiford DS. Hepatic stellate cell activation in nonalcoholic steatohepatitis and fatty liver. Hum Pathol. 2000;31:822–828

    Article  CAS  Google Scholar 

  34. Burke MD. Liver function: test selection and interpretation of results. Clin Lab Med. 2002;22:377–390

    Article  Google Scholar 

  35. Fiorucci S, Rizzo G, Antonelli E, Renga B, Mencarelli A, Riccardi L, Morelli A, et al. Cross-talk between farnesoid-X-receptor (FXR) and peroxisome proliferator-activated receptor gamma contributes to the antifibrotic activity of FXR ligands in rodent models of liver cirrhosis. J Pharmacol Exp Ther. 2005;315:58–68

    Article  CAS  Google Scholar 

  36. Fiorucci S, Rizzo G, Antonelli E, Renga B, Mencarelli A, Riccardi L, Orlandi S, et al. A farnesoid X receptor-small heterodimer partner regulatory cascade modulates tissue metalloproteinase inhibitor-1 and matrix metalloprotease expression in hepatic stellate cells and promotes resolution of liver fibrosis. J Pharmacol Exp Ther. 2005;314:584–595

    Article  CAS  Google Scholar 

  37. Matsukuma KE, Bennett MK, Huang J, Wang L, Gil G, Osborne TF. Coordinated control of bile acids and lipogenesis through FXR-dependent regulation of fatty acid synthase. J Lipid Res. 2006;47:2754–2761

    Article  CAS  Google Scholar 

  38. Cariou B. The farnesoid X receptor (FXR) as a new target in non-alcoholic steatohepatitis. Diabetes Metab. 2008;34:685–691

    Article  CAS  Google Scholar 

  39. Cipriani S, Mencarelli A, Palladino G, Fiorucci S. FXR activation reverses insulin resistance and lipid abnormalities and protects against liver steatosis in Zucker (fa/fa) obese rats. J Lipid Res. 2010;51:771–784

    Article  CAS  Google Scholar 

  40. Herrema H, Meissner M, van Dijk TH, Brufau G, Boverhof R, Oosterveer MH, Reijngoud DJ, et al. Bile salt sequestration induces hepatic de novo lipogenesis through farnesoid X receptor- and liver X receptor alpha-controlled metabolic pathways in mice. Hepatology. 2010;51:806–816

    Article  CAS  Google Scholar 

  41. Adorini L, Pruzanski M, Shapiro D. Farnesoid X receptor targeting to treat nonalcoholic steatohepatitis. Drug Discov Today. 2012;17:988–997

    Article  CAS  Google Scholar 

  42. Eberle D, Hegarty B, Bossard P, Ferre P, Foufelle F. SREBP transcription factors: master regulators of lipid homeostasis. Biochimie. 2004;86:839–848

    Article  CAS  Google Scholar 

  43. Sugden MC, Holness MJ. Mechanisms underlying regulation of the expression and activities of the mammalian pyruvate dehydrogenase kinases. Arch Physiol Biochem. 2006;112:139–149

    Article  CAS  Google Scholar 

  44. Kajikawa S, Imada K, Takeuchi T, Shimizu Y, Kawashima A, Harada T, Mizuguchi K. Eicosapentaenoic acid attenuates progression of hepatic fibrosis with inhibition of reactive oxygen species production in rats fed methionine- and choline-deficient diet. Dig Dis Sci. 2011;56:1065–1074

    Article  CAS  Google Scholar 

Download references

Financial support

There are no sources of funding to report.

Conflict of interest

The authors report no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason J. Schwartz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schwartz, J.J., Emerson, L., Hillas, E. et al. Amelioration of hepatic inflammation in a mouse model of NASH using a dithiocarbamate derivative. Hepatol Int 7, 600–609 (2013). https://doi.org/10.1007/s12072-013-9426-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12072-013-9426-3

Keywords

Navigation