Skip to main content
Log in

Lidocaïne test for easier and less time consuming assessment of liver function in several hepatic injury models

  • Original Article
  • Published:
Hepatology International Aims and scope Submit manuscript

Abstract

Purpose

In this study, we developed an ex vivo functional assay to assess liver metabolic capacity adapted from the lidocaïne test in rats.

Methods

Animals used were subjected to different models of liver injury: hypothermic ischemia (H/I, n = 8), ischemia-reperfusion (I/R, n = 8) and CCl4 induced liver cirrhosis (n = 11), and compared with sham operated rats (n = 5). Livers were then extracted and a fragment of whole tissue was incubated with lidocaïne for 15, 30, 60, 120, 240, 360, and 720 min at which both lidocaïne and its major metabolite monoethylglycinexylidide (MEGX) were measured by high performance liquid chromatography (HPLC). A histological study and biochemical assays (transaminase levels) were also performed to further evaluate and confirm our data.

Results

Pharmacokinetic profile of lidocaïne metabolism in sham-operated animals revealed that the maximum concentration of MEGX is achieved at 120 min. Both lidocaïne metabolism and MEGX formation levels were significantly altered in all three models of hepatic injury. The extent of hepatic damage was confirmed by increased levels of transaminase levels and alteration of hepatocyte’s structure with areas of necrosis.

Conclusion

Our method provides reliable and reproducible results using only a small portion of liver which allows for a fast and easy assessment of liver metabolic capacity. Moreover, our method presents an alternative to the in vivo technique and seems more feasible in a clinical setting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Zimmermann H, Reichen J. Assessment of the Liver Function in the Surgical Patient. In Fong Y. Blugmart LH, editors. Surgical of the Liver and Biliary Tract. London: Saunders;2000. 35–64

  2. Barstow L, Small RE. Liver function assessment by drug metabolism. Pharmacotherapy 1990;10(4):280–288

    PubMed  CAS  Google Scholar 

  3. Sakka SG. Assessing liver function. Curr Opin Crit Care 2007;13(2):207–214

    Article  PubMed  Google Scholar 

  4. Huang LS, Lee SD, Deng JF, Wu JC, Lu RH, Lin YF, Wang YJ, Lo KJ. Measuring lidocaine metabolite—monoethylglycinexylidide as a quantitative index of hepatic function in adults with chronic hepatitis and cirrhosis. J Hepathol 1993;19(1):140–147

    Article  CAS  Google Scholar 

  5. Van Thiel DH, Hassanein T. Assessment of liver function: the current situation. J Okla State Med Assoc 1995;88(1):11–16

    PubMed  Google Scholar 

  6. Oellerich M, Armstrong VW. The MEGX test: a tool for the real-time assessment of hepatic function. Ther Drug Monit 2001;23(2):81–92.

    Article  PubMed  CAS  Google Scholar 

  7. Caesar J SS, Chiandussi L, Guevara L, Sherlock S. The use of indocyanine green in the measurement of hepatic blood flow and as a test of hepatic function. Clin Sci 1961;21:43–57

    PubMed  CAS  Google Scholar 

  8. Tygstrup N. Determination of the hepatic elimination capacity (Lm) of galactose by single injection. Scand J Clin Lab Invest Suppl 1966;18:118–125

    PubMed  CAS  Google Scholar 

  9. Desmond PV, et al. Impaired elimination of caffeine in cirrhosis. Dig Dis Sci 1980;25(3):193–197

    Article  PubMed  CAS  Google Scholar 

  10. Oellerich M, et al. Monoethylglycinexylidide formation kinetics: a novel approach to assessment of liver function. J Clin Chem Clin Biochem 1987;25(12):845–853

    PubMed  CAS  Google Scholar 

  11. Fan ST, et al. Evaluation of indocyanine green retention and aminopyrine breath tests in patients with malignant biliary obstruction. Aust N Z J Surg 1994;64(11):759–762

    Article  PubMed  CAS  Google Scholar 

  12. Gao L, Ramzan I, Baker AB. Potential use of pharmacological markers to quantitatively assess liver function during liver transplantation surgery. Anaesth Intensive Care 2000;28(4):375–385

    PubMed  CAS  Google Scholar 

  13. Bargetzi MJ, et al. Lidocaine metabolism in human liver microsomes by cytochrome P450IIIA4. Clin Pharmacol Ther 1989;46(5):521–527

    Article  PubMed  CAS  Google Scholar 

  14. Imaoka SEK, Oda Y, Asada A, Fujimori M, Shimada T, Fujita S, Guengerich FP, Funae Y. Lidocaine metabolism by human cytochrome P-450s purified from hepatic microsomes: comparison of those with rat hepatic cytochrome P-450s. J Pharmacol Exp Ther 1990;255(3):1385–1391

    PubMed  CAS  Google Scholar 

  15. Fairchild R, et al. Prognostic value of the monoethylglycinexylidide liver function test in assessing donor liver suitability. Arch Surg 1996;131(10):1099–1102

    PubMed  CAS  Google Scholar 

  16. Kupcová V. Importance of determination of monoethylglycinexylidide (MEGX)—as a liver function test in hepatology and liver transplantation. Bratisl Lek Listy 1999;100(1):49–53

    Google Scholar 

  17. Tanaka E, Inomata S, Yasuhara H. The clinical importance of conventional and quantitative liver function tests in liver transplantation. J Clin Pharm Ther 2000;25(6):411–419

    Article  PubMed  CAS  Google Scholar 

  18. Testa R, et al. Lidocaine elimination and monoethylglycinexylidide formation in patients with chronic hepatitis or cirrhosis. Hepatogastroenterology 1998;45(19):154–159

    PubMed  CAS  Google Scholar 

  19. Ercolani GGG, Callivà R, Pierangeli F, Cescon M, Cavallari A, Mazziotti A. The lidocaine (MEGX) test as an index of hepatic function: its clinical usefulness in liver surgery. Surgery 2000;27(4):464–471

    Article  Google Scholar 

  20. Blumer J, Strong JM, Atkinson AJ Jr. The convulsant potency of lidocaine and its N-dealkylated metabolites. J Pharmacol Exp Ther 1973;186(1):31–36

    PubMed  CAS  Google Scholar 

  21. Rademaker AW, et al. Character of adverse effects of prophylactic lidocaine in the coronary care unit. Clin Pharmacol Ther 1986;40(1):71–80

    Article  PubMed  CAS  Google Scholar 

  22. Kaneko H, Otsuka Y, Katagiri M, Maeda T, Tsuchiya M, Tamura A, Ishii T, Takagi S, Shiba T. Reassessment of monoethylglycinexylidide as preoperative liver function test in a rat model of liver cirrhosis and man. Clin Exp Med 2001;1(1):19–26

    Article  PubMed  CAS  Google Scholar 

  23. Oda Y, et al. Metabolism of lidocaine by purified rat liver microsomal cytochrome P-450 isozymes. Biochem Pharmacol 1989;38(24):4439–4444

    Article  PubMed  CAS  Google Scholar 

  24. Alexson SE, et al. Involvement of liver carboxylesterases in the in vitro metabolism of lidocaine. Drug Metab Dispos 2002;30(6):643–647

    Article  PubMed  CAS  Google Scholar 

  25. Nauta RJ, Uribe M, Walsh DB, Miller D, Butterfield A. Description of a chronic in vivo model for the study of warm hepatic ischemia-reperfusion injury. Surg Res Commun 1989;6:241–246

    Google Scholar 

  26. Ishak K, Baptista A, Bianchi L, Callea F, De Groote J, Gudat F, Denk H, Desmet V, Korb G, MacSween RN, et al. Histological grading and staging of chronic hepatitis. J Hepatol 1995;22(6):696–699

    Article  PubMed  CAS  Google Scholar 

  27. Olinga P, et al. Value of the in vitro or in vivo monoethylglycinexylidide test for predicting liver graft function. Transplantation 1997;64(1):60–65

    Article  PubMed  CAS  Google Scholar 

  28. Wang JS, et al. Involvement of CYP1A2 and CYP3A4 in lidocaine N-deethylation and 3-hydroxylation in humans. Drug Metab Dispos 2000;28(8):959–965

    PubMed  CAS  Google Scholar 

  29. Orlando R, Piccoli P, De Martin S, Padrini R, Floreani M, Palatini P. Cytochrome P450 1A2 is a major determinant of lidocaine metabolism in vivo: effects of liver function. Clin Pharmacol Ther 2004;75(1):80–88

    Article  PubMed  CAS  Google Scholar 

  30. Imamura H, Sano K, Sugawara Y, Koduko N, Makuuchi M. Assessment of hepatic reserve for indication of hepatic resection: decision tree incorporating indocyanine green test. J Hepatobiliary Pancreat Surg 2005;12(1):16–22

    Article  PubMed  Google Scholar 

  31. Oda Y, Kariya N, Nakamoto T, Nishi S, Asada A, Fujimori M. The monoethylglycinexylidide test is more useful for evaluating liver function than indocyanine green test: case of a patient with remarkably decreased indocyanine green half-life. Ther Drug Monit 1995;17(2):207–210

    Article  PubMed  CAS  Google Scholar 

  32. Testa R, Caglieris S, Risso D, Arzani L, Campo N, Alvarez S, Giannini E, Lantieri PB, Celle G. Monoethylglycinexylidide formation measurement as a hepatic function test to assess severity of chronic liver disease. Am J Gastroenterol 1997;92(12):2268–2273

    PubMed  CAS  Google Scholar 

  33. Bhise SB, Dias RJ. Monoethylglycinexylidide (MEGX) as a liver function test in cirrhosis. Indian J Gastroenterol 2007;26(4):167–169

    PubMed  Google Scholar 

  34. Dresing K, Armstrong VW, Leip CL, Streit F, Burchardi H, Stürmer KM, Oellerich M. Real-time assessment of hepatic function is related to clinical outcome in critically ill patients after polytrauma. Clin Biochem 2007;40:1194–2200

    Article  PubMed  CAS  Google Scholar 

  35. Limdi JK, Hyde GM. Evaluation of abnormal liver function tests. Postgrad Med J 2003;79(932):307–312

    Article  PubMed  CAS  Google Scholar 

  36. Yamamoto S, et al. Genistein suppresses cellular injury following hepatic ischemia/reperfusion. Transplant Proc 1996;28(2):1111–1115

    PubMed  CAS  Google Scholar 

  37. Borghi-Scoazec G, et al. Apoptosis after ischemia-reperfusion in human liver allografts. Liver Transpl Surg 1997;3(4):407–415

    Article  PubMed  CAS  Google Scholar 

  38. Kohli V, et al. Endothelial cell and hepatocyte deaths occur by apoptosis after ischemia-reperfusion injury in the rat liver. Transplantation 1999;67(8):1099–1105

    Article  PubMed  CAS  Google Scholar 

  39. Duval M, et al. Implication of mitochondrial dysfunction and cell death in cold preservation–warm reperfusion-induced hepatocyte injury. Can J Physiol Pharmacol 2006;84(5):547–554

    Article  PubMed  CAS  Google Scholar 

  40. Gawronska-Szklarz B, et al. Lidocaine metabolism in isolated perfused liver from streptozotocin-induced diabetic rats. J Pharm Pharmacol 2006;58(8):1073–1077

    Article  PubMed  CAS  Google Scholar 

  41. Wang ZR, Zhang RM, Yan LN, Wang WT, Jia QB. Evaluation of the liver reserve using lidocaine test on experimental liver injuries in rats. Zhonghua Gan Zang Bing Za Zhi 2006;14(6):445–448

    PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Dr Abdelmoula and Dr Kourda for their valuable assistance in biochemical and histopathological assays, respectively, as well as Dr Kooli for her careful and critical analysis of our results and reading of our paper. This study was supported by the Ministry of Public Health of Tunisia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dorra Ben Said.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ben Said, D., Ben Ali, R., Ferchichi, H. et al. Lidocaïne test for easier and less time consuming assessment of liver function in several hepatic injury models. Hepatol Int 5, 941–948 (2011). https://doi.org/10.1007/s12072-011-9270-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12072-011-9270-2

Keywords

Navigation